Besnoitia besnoiti and B. caprae, which infect bovids (cattle and antelopes) and goats, respectively, are responsible for besnoitiosis, a chronic and debilitating disease. Bovine besnoitiosis is considered to be a reemerging disease in Central and Western Europe. In addition, infection by Besnoitia spp. has been reported in reindeer from Sweden and Finland. Recently, the parasite was also detected in roe deer and red deer from Spain, where an interconnection between the domestic and sylvatic cycles of B. besnoiti has been presumed. In contrast, caprine besnoitiosis seems to be enzootic to Kenya and Iran. The presence of Besnoitia spp. in small domestic ruminants has never been explored in Europe, and the role that these species might play in the epidemiology of bovine besnoitiosis, as intermediate hosts or reservoirs of B. besnoiti, remains unknown. Herein, the first serosurvey conducted in European sheep and goats from areas in Spain where bovine besnoitiosis is endemic is described. Convenience sampling was conducted of 1943 sheep and 342 goats close to cattle from the Pyrenees and Central Spain that were infected with endemic Besnoitia spp. Serum samples were first analyzed by ELISA and then by confirmatory Western blot. Specific antibodies were not found in any sampled animal. Thus, sheep are unlikely to play a role in the epidemiology of bovine besnoitiosis, at least in the sampled areas. A larger serosurvey is necessary to determine whether goats might be a putative reservoir. To confirm the results of this study, sheep and goats should be further studied in other European countries and regions where their numbers are high and where bovine besnoitiosis is spreading.
Food authenticity is becoming increasingly important but challenges existing analytical methods. In this study, we analyze the mango cultivar Alphonso with regard to authenticity using 1H-NMR spectroscopy. This cultivar has been termed “the king of mangoes” due to its unique flavor. Regarding its metabolites however, little is known about unique constellations that allow for differentiation of the Alphonso cultivar. We find that the Alphonso cultivar is distinguished by high levels of niacin, trigonelline, and histidine but features relatively low levels of alanine. Furthermore, we develop a model based on the local outlier factor algorithm that effectively detects admixture of non-Alphonso cultivars to Alphonso purée. This task is highly challenging because we identified no metabolites that are unique or uniquely absent in the Alphonso cultivar compared to other mango cultivars analyzed in this study. Our model shows promising results on a test set: Admixtures consisting of 35% non-Alphonso and 65% Alphonso mango purée were uncovered with a sensitivity of 88%. At the same time, our model verified Alphonso samples with a good specificity of 86%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.