Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
Using Herschel data from the deepest SPIRE and PACS surveys (HerMES and PEP) in COSMOS, GOODS-S and GOODS-N, we examine the dust properties of infrared (IR)luminous (L IR > 10 10 L ) galaxies at 0.1 < z < 2 and determine how these evolve with cosmic time. The unique angle of this work is the rigorous analysis of survey selection effects, making this the first study of the star-formation-dominated, IR-luminous population within a framework almost entirely free of selection biases. We find that IR-luminous galaxies have spectral energy distributions (SEDs) with broad far-IR peaks characterized by cool/extended dust emission and average dust temperatures in the 25-45 K range. Hot (T > 45 K) SEDs and cold (T < 25 K), cirrus-dominated SEDs are rare, with most sources being within the range occupied by warm starbursts such as M82 and cool spirals such as M51. We observe a luminosity-temperature (L−T ) relation, where the average dust temperature of log [L IR /L ] ∼ 12.5 galaxies is about 10 K higher than that of their log [L IR /L ] ∼ 10.5 counterparts. However, although the increased dust heating in more luminous systems is the driving factor behind the L−T relation, the increase in dust mass and/or starburst size with luminosity plays a dominant role in shaping it. Our results show that the dust conditions in IR-luminous sources evolve with cosmic time: at high redshift, dust temperatures are on average up to 10 K lower than what is measured locally (z 0.1). This is manifested as a flattening of the L−T relation, suggesting that (ultra)luminous infrared galaxies [(U)LIRGs] in the early Universe are typically characterized by a more extended dust distribution and/or higher dust masses than local equivalent sources. Interestingly, the evolution in dust temperature is luminosity dependent, with the fraction of LIRGs with T < 35 K showing a two-fold increase from z ∼ 0 to z ∼ 2, whereas that of ULIRGs with T < 35 K shows a six-fold increase. Our results suggest a greater diversity in the IR-luminous population at high redshift, particularly for ULIRGs.
We set out to determine the ratio, q IR , of rest-frame 8-1000-μm flux, S IR , to monochromatic radio flux, S 1.4 GHz , for galaxies selected at far-infrared (IR) and radio wavelengths, to search for signs that the ratio evolves with redshift, luminosity or dust temperature, T d , and to identify any far-IR-bright outliers -useful laboratories for exploring why the far-IR/radio correlation (FIRRC) is generally so tight when the prevailing theory suggests variations are almost inevitable. We use flux-limited 250-μm and 1.4-GHz samples, obtained using Herschel and the Very Large Array (VLA) in GOODS-North (-N). We determine bolometric IR output using ten bands spanning λ obs = 24−1250 μm, exploiting data from PACS and SPIRE (PEP; HerMES), as well as Spitzer, SCUBA, AzTEC and MAMBO. We also explore the properties of an L IR -matched sample, designed to reveal evolution of q IR with redshift, spanning log L IR = 11-12 L and z = 0−2, by stacking into the radio and far-IR images. For 1.4-GHz-selected galaxies in GOODS-N, we see tentative evidence of a break in the flux ratio, q IR , at L 1.4 GHz ∼ 10 22.7 W Hz −1 , where active galactic nuclei (AGN) are starting to dominate the radio power density, and of weaker correlations with redshift and T d . From our 250-μm-selected sample we identify a small number of far-IR-bright outliers, and see trends of q IR with L 1.4 GHz , L IR , T d and redshift, noting that some of these are inter-related. For our L IR -matched sample, there is no evidence that q IR changes significantly as we move back into the epoch of galaxy formation: we find q IR ∝ (1 + z) γ , where γ = −0.04 ± 0.03 at z = 0 − 2; however, discounting the least reliable data at z < 0.5 we find γ = −0.26 ± 0.07, modest evolution which may be related to the radio background seen by ARCADE 2, perhaps driven by <10-μJy radio activity amongst ordinary star-forming galaxies at z > 1.
The Herschel Space Observatory enables us to accurately measure the bolometric output of starburst galaxies and active galactic nuclei (AGN) by directly sampling the peak of their far-infrared (IR) emission. Here we examine whether the spectral energy distribution (SED) and dust temperature of galaxies have strongly evolved over the last 80% of the age of the Universe. We discuss possible consequences for the determination of starformation rates (SFR) and any evidence for a major change in their star-formation properties. We use Herschel deep extragalactic surveys from 100 to 500 μm to compute total IR luminosities in galaxies down to the faintest levels, using PACS and SPIRE in the GOODS-North field (PEP and HerMES key programs). An extension to fainter luminosities is done by stacking images on 24 μm prior positions. We show that measurements in the SPIRE bands can be used below the statistical confusion limit if information at higher spatial resolution is used, e.g. at 24 μm, to identify "isolated" galaxies whose flux is not boosted by bright neighbors. Below z ∼ 1.5, mid-IR extrapolations are correct for star-forming galaxies with a dispersion of only 40% (0.15 dex), therefore similar to z ∼ 0 galaxies, over three decades in luminosity below the regime of ultra-luminous IR galaxies (ULIRGs, L IR ≥ 10 12 L ). This narrow distribution is puzzling when considering the range of physical processes that could have affected the SED of these galaxies. Extrapolations from only one of the 160 μm, 250 μm or 350 μm bands alone tend to overestimate the total IR luminosity. This may be explained by the lack of far-IR constraints around and above ∼150 μm (rest-frame) before Herschel on those templates. We also note that the dust temperature of luminous IR galaxies (LIRGs, L IR ≥ 10 11 L ) around z ∼ 1 is mildly colder by 10-15% than their local analogs and up to 20% for ULIRGs at z ∼ 1.6 (using a single modified blackbody-fit to the peak far-IR emission with an emissivity index of β = 1.5). Above z = 1.5, distant galaxies are found to exhibit a substantially larger mid-over far-IR ratio, which could either result from stronger broad emission lines or warm dust continuum heated by a hidden AGN. Two thirds of the AGNs identified in the field with a measured redshift exhibit the same behavior as purely star-forming galaxies. Hence a large fraction of AGNs harbor coeval star formation at very high SFR and in conditions similar to purely star-forming galaxies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.