Aker Solutions conceptually designed the accelerator-driven thorium reactor 600 MWe power station, an acceleratordriven, thorium-fuelled, lead-cooled fast reactor. Project objectives were to demonstrate the technical feasibility of the design to ensure a viable product. Aims were to apply established technology where possible, minimising research and development requirements, develop and protect intellectual property and align with Generation IV strategy. A business case demonstrates economic and market potential to stakeholders, and partners are being pursued to take the project through to successful completion. Thorium is an attractive alternative to uranium fuel, being more abundant and avoiding the need for enrichment. Additionally the accelerator-driven thorium reactor can burn waste actinides generated in uranium-fuelled reactors, providing sustainable energy for future civilisation.Choosing a sub-critical accelerator-driven system provides safe operating margins for the thorium fuel cycle. The proposed reactivity coefficient of 0 . 995 allows selection of an industrial-scale accelerator with commercial benefits which led to a novel solution for measurement and control of reactivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.