ÖzetçeBir nesnenin net görüntüsünü otomatik olarak elde etmek bilgisayarla görme alanında çok önemlidir. Bir nesne noktasının net görüntüsü farklı yollardan elde edilebilir. Bu işlemi otomatikleştirmek için bir kıstas fonksiyonuna (criterion function, CF) gerek vardır. Daha hassas sonuçlar elde edebilmek için CF'ler birlikte değerlendirilebilir. Bu çalışmada resim netliğini belirlemek için yapay sinir ağları (YSA) kullanılarak üç farklı CF birlikte hesaplanmıştır. Geliştirilen yöntem farklı resimlerin netliğini belirlemede kullanılmıştır ve performansı değerlendirilmiştir. AbstractBecause sharply focused images inherently contain more information than defocused images, automatically obtaining the sharp image of a scene is an important task in computer vision. A camera can be sharply focused on an object point in different ways. To automate this task, a criterion function (CF) is needed to measure the sharpness of focus. Better performance can be achieved by computing more than one CFs and making judgements based on all of them rather than only one of them. This paper deals with the use of feedforward neural networks trained by LevenbergMarquardt algorithm to compute three different CFs for measuring the sharpness of images. The developed technique is employed on different images to calculate the sharpness of them and its performance is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.