Radioactive27 Mg (t 1/2 =9.5 min) was implanted into GaN of different doping types at CERN's ISOLDE facility and its lattice site determined via β − emission channeling. Following implantations between room temperature and 800°C, the majority of 27 Mg occupies the substitutional Ga sites, however, below 350°C significant fractions were also found on interstitial positions ~0.6 Å from ideal octahedral sites. The interstitial fraction of Mg was correlated with the GaN doping character, being highest (up to 31%) in samples doped p-type with 2×1019 cm −3 stable Mg during epilayer growth, and lowest in Si-doped n-GaN, thus giving direct evidence for the amphoteric character of Mg. Implanting above 350°C converts interstitial 27 Mg to substitutional Ga sites, which allows estimating the activation energy for migration of interstitial Mg as between 1.3 and 2.0 eV.
We have investigated the lattice location of implanted transition metal (TM) 56 Mn, 59 Fe and 65 Ni ions in undoped single-crystalline cubic 3C-SiC by means of the emission channeling technique using radioactive isotopes produced at the CERN-ISOLDE facility. We find that in the room temperature as-implanted state, most Mn, Fe and Ni atoms occupy carbon-coordinated tetrahedral interstitial sites (T C). Smaller TM fractions were also found on Si substitutional (S Si) sites. The TM atoms partially disappear from ideal-T C positions during annealing at temperatures between 500 °C and 700 °C, which is accompanied by an increase in the TM fraction occupying both S Si sites and random sites. An explanation is given according to what is known about the annealing mechanisms of silicon vacancies in silicon carbide. The origin of the observed lattice sites and their changes with thermal annealing are discussed and compared to the case of Si, highlighting the feature that the interstitial migration of TMs in SiC is much slower than in Si.
We determined the lattice location of Mn in ferromagnetic (Ga,Mn)As using the electron emission channeling technique. We show that interstitial Mn occupies the tetrahedral site with As nearest neighbors (T As ) both before and after thermal annealing at 200 °C, whereas the occupancy of the tetrahedral site with Ga nearest neighbors (T Ga ) is negligible. T As is therefore the energetically favorable site for interstitial Mn in isolated form as well as when forming complexes with substitutional Mn. These results shed new light on the long standing controversy regarding T As versus T Ga occupancy of interstitial Mn in (Ga,Mn)As.[http://dx.doi.org/10.1063/1.4905556] a lino.pereira@fys.kuleuven.be (Ga,Mn)As has become the model system, in which to explore the physics of carrier-mediated ferromagnetism in semiconductors and the associated spintronic phenomena. 1,2In particular, as the most widely studied dilute magnetic semiconductor (DMS), (Ga,Mn)As is the perfect example of how the magnetic behavior of DMS materials is strongly influenced by local structure. In typical high Curie temperature (T C ) (Ga,Mn)As thin films (several % Mn regime), the majority of the Mn atoms substitute for Ga (Mn s ), while a minority fraction (several % of all Mn) occupies interstitial sites (Mn i ).3,4 Mn s provides both the localized magnetic moment and the itinerant hole that mediates the magnetic coupling, whereas Mn i has a twofold compensating effect: (i) magnetically, as Mn i -Mn s pairs couple antiferromagnetically and (ii) electrically, since double donor Mn i compensates Mn s acceptors.3 For a given Mn s concentration, Mn i therefore determines the hole concentration, the Fermi level and the effective Mn s concentration (of non-compensated Mn s moments), all of which define the magneto-electronic behavior of (Ga,Mn)As. The existence of such a crucial role of Mn i is clearly reflected in the effect of the Mn i concentration on the two relevant figures of merit: T C and magnetization. 3−5 Despite this central role in the understanding of (Ga,Mn)As, and, consequently, of Mn-doped III-V DMS materials, interstitial Mn is far from being a well understood defect. The presence of Mn i in ferromagnetic (Ga,Mn)As was first reported based on ion channeling measurements. 6Although consistent with Mn i occupying tetrahedral (T) interstitial sites, the measurements did not allow to discriminate between the two nonequivalent T sites: coordinated by four Ga atoms (T Ga ) or by four As atoms (T As ). Transmission electron microscopy measurements using the (002) diffracted beam indicated that Mn i predominantly occupies the T As site.7 X-ray absorption fine structure (XAFS) techniques were later applied, suggesting T Ga occupancy (e.g., Refs. 8 and 9). However, XAFS is not well suited to distinguish neighboring elements with similar atomic numbers, as is the case for Ga and As, especially in such cases of multi-site occupancy (substitutional and interstitial), where the site to be identified is in fact the minority one (interstitial). In pi...
In (Ga,Mn)As, a model dilute magnetic semiconductor, the electric and magnetic properties are strongly influenced by the lattice sites occupied by the Mn atoms. In particular, the highest Curie temperatures are achieved upon thermal annealing in a narrow temperature window around 200 • C, by promoting the diffusion of interstitial Mn towards the surface. In this work, we determined the thermal stability of both interstitial and substitutional Mn in ferromagnetic (Ga,Mn)As thin films, using the emission channeling technique. At a higher Mn concentration, the temperatures at which substitutional and interstitial Mn become mobile not only decrease, but also become closer to each other. These findings advance our understanding of self-compensation in (Ga,Mn)As by showing that the strong dependence of the Curie temperature on annealing temperature around 200 • C is a consequence of balance between diffusion of interstitial Mn and segregation of substitutional Mn.
We give an overview on the historical development and current program for lattice location studies at CERN's ISOLDE facility, where the EC-SLI (Emission Channeling with Short-Lived Isotopes) collaboration maintains several setups for this type of experiments. We illustrate that the three most decisive factors for the success of the technique are access to facilities producing radioactive isotopes, position-sensitive detectors for the emitted decay particles, and reliable simulation codes which allow for quantitative analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.