The use of a kinematic hardening soil model for predicting short-and long-term ground movements due to tunnelling in London Clay is investigated. The model is calibrated against oedometer and triaxial tests on intact samples from different units of the London Clay. The calibrated model is then used in finite-element analysis to simulate the field response at St James's Park during excavation of the Jubilee Line Extension tunnels. The finite-element predictions compare well with the available field monitoring data. The importance of using consistent initial conditions for this complex boundary value problem in conjunction with the model parameters selected is highlighted. The stiffness response of different regions of the finite-element mesh indicates that the rate at which the stiffness degrades and the stiffness response further away from the tunnel boundary affect the short-term predictions significantly. The long-term predictions confirm that the compression characteristics of the soil control the magnitude of the consolidation settlements and its permeability the shape of the long-term settlement profiles.
Construction of the Crossrail tunnels just beneath the existing Central line tunnels at the northern side of Hyde Park provided the impetus for this paper. A basic three-dimensional (3D) finite-element (FE) model was developed to study a general case of a new tunnel (NT) crossing perpendicularly below an existing tunnel (ET). A series of 3D FE analyses was carried out and the results presented in this paper reveal some of the interaction effects. Changes in hoop forces, bending moments and lining deformations of the ET due to excavation of the NT are discussed. Conclusions are drawn about how the relative position of the excavation face of the NT in relation to the ET's axis affects the latter's behaviour. Cross-sectional and longitudinal deformations of the ET are discussed, leading to recommendations for field monitoring of similar interaction cases. Two parametric studies were also carried out to quantify the effects of the magnitude of the earth pressure balance machine face pressure and the longitudinal stiffness of the ET on the predicted behaviour of the ET due to construction of the NT
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.