The two-step conversion of industrial liquefied hydrocarbon gases (LHG) on NIAP-07-01 (NKM-1) and NIAP-03-01 catalysts for the production of hydrogen-containing gases was investigated. The experiments were carried out in flow reactors with a fixed catalyst bed at a pressure of 0.1 MPa under the following conditions: temperature 350–450 °C, gas hourly space velocity (GHSV) 1000–3000 h–1, steam-gas ratio 4 : 1–8 : 1 (pre-reforming); and temperature 700 °C, GHSV 2000 h–1, air-gas ratio 1.2 : 1 (steam-air reforming). Under the studied conditions, the concentrations of components of the converted gas correspond to the equilibrium values calculated within the Peng-Robinson model. The conversion of methane homologs in the pre-reforming step was found to be virtually 100 %; therewith, the methane concentration reached 32–54 %, and that of hydrogen, 24–47 %. To prevent the formation of elemental carbon (carbonization), pre-reforming of hydrocarbon gases with a high methane equivalent should be performed at H2O : C > 2. In the two-step reforming, the yield of hydrogen-containing gas reaches 15.6 m3 from 1 m3 of the initial LHG with the hydrogen content 41.81 %, and the total content of CO and H2 exceeds 52 %.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.