We propose a new model of self-organized criticality. A particle is dropped at random on a lattice and moves along directions specified by arrows at each site. As it moves, it changes the direction of the arrows according to fixed rules. On closed graphs these walks generate Euler circuits. On open graphs, the particle eventually leaves the system, and a new particle is then added. The operators corresponding to particle addition generate an abelian group, same as the group for the Abelian Sandpile model on the graph. We determine the critical steady state and some critical exponents exactly, using this equivalence.
We study probability distributions of waves of topplings in the Bak-Tang-Wiesenfeld model on hypercubic lattices for dimensions D>/=2. Waves represent relaxation processes which do not contain multiple toppling events. We investigate bulk and boundary waves by means of their correspondence to spanning trees, and by extensive numerical simulations. While the scaling behavior of avalanches is complex and usually not governed by simple scaling laws, we show that the probability distributions for waves display clear power-law asymptotic behavior in perfect agreement with the analytical predictions. Critical exponents are obtained for the distributions of radius, area, and duration of bulk and boundary waves. Relations between them and fractal dimensions of waves are derived. We confirm that the upper critical dimension D(u) of the model is 4, and calculate logarithmic corrections to the scaling behavior of waves in D=4. In addition, we present analytical estimates for bulk avalanches in dimensions D>/=4 and simulation data for avalanches in D=3. For D=2 they seem not easy to interpret.
The structure of avalanches in the Abelian sandpile model is analyzed. It is shown that an avalanche can be considered as a sequence of waves of dec~easing sizes. Being more elementary events, waves admit the representation in terms of the q-component Potts / model in the limit q -+ O. The decrement of waves follows the power law with the I exponent a simply related with basic exponents of the sandpile model. Using known 1\ \ exponents of the Potts model, we derive a from scaling arguments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.