[1] An updated accumulation map for Greenland is presented on the basis of 39 new ice core estimates of accumulation, 256 ice sheet estimates from ice cores and snow pits used in previous maps, and reanalysis of time series data from 20 coastal weather stations. The period 1950-2000 is better represented by the data than are earlier periods. Ice-sheetwide accumulation was estimated based on kriging. The average accumulation (95% confidence interval, or ±2 times standard error) over the Greenland ice sheet is 30.0 ± 2.4 g cm À2 a À1 , with the average accumulation above 2000-m elevation being essentially the same, 29.9 ± 2.2 g cm À2 a À1 . At higher elevations the new accumulation map maintains the main features shown in previous maps. However, there are five coastal areas with obvious differences: southwest, northwest, and eastern regions, where the accumulation values are 20-50% lower than previously estimated, and southeast and northeast regions, where the accumulation values are 20-50% higher than previously estimated. These differences are almost entirely due to new coastal data. The much lower accumulation in the southwest and the much higher accumulation in the southeast indicated by the current map mean that long-term mass balance in both catchments is closer to steady state than previously estimated. However, uncertainty in these areas remains high owing to strong gradients in precipitation from the coast inland. A significant and sustained precipitation measurement program will be needed to resolve this uncertainty.
RADARSAT data from the 1997 Antarctic Mapping Mission are used interferometrically to solve for the 3‐dimensional surface ice motion in the interior of the West Antarctic Ice Sheet (WAIS). An area of ∼125 km2 in a tributary of the Kamb Ice Stream slumped vertically downwards by up to ∼50 cm between September 26 and October 18, 1997. Areas in the Bindschadler Ice Stream also exhibited comparable upward and downward surface displacements. As the uplift and subsidence features correspond to sites at which the basal water apparently experiences a hydraulic potential well, we suggest transient movement of pockets of subglacial water as the most likely cause for the vertical surface displacements. These results, and related lidar observations, imply that imaging the change in ice surface elevation can help reveal the key role of water in the difficult‐to‐observe subglacial environment, and its important influence on ice dynamics.
Thirteen annually resolved accumulation-rate records covering the last ~200 years from the Pine Island–Thwaites and Ross drainage systems and the South Pole are used to examine climate variability over West Antarctica. Accumulation is controlled spatially by the topography of the ice sheet, and temporally by changes in moisture transport and cyclonic activity. A comparison of mean accumulation since 1970 at each site to the long-term mean indicates an increase in accumulation for sites located in the western sector of the Pine Island–Thwaites drainage system. Accumulation is negatively associated with the Southern Oscillation Index (SOI) for sites near the ice divide, and periods of sustained negative SOI (1940–42, 1991–95) correspond to above-mean accumulation at most sites. Correlations of the accumulation-rate records with sea-level pressure (SLP) and the SOI suggest that accumulation near the ice divide and in the Ross drainage system may be associated with the mid-latitudes. The post-1970 increase in accumulation coupled with strong SLP–accumulation-rate correlations near the coast suggests recent intensification of cyclonic activity in the Pine Island– Thwaites drainage system.
Isochronal layers in firn detected with ground-penetrating radar (GPR) and dated using results from ice-core analyses are used to calculate accumulation rates along a 100 km across-flow profile in West Antarctica. Accumulation rates are shown to be highly variable over short distances. Elevation measurements from global positioning system surveys show that accumulation rates derived from shallow horizons correlate well with surface undulations, which implies that wind redistribution of snow is the leading cause of this variability. Temporal changes in accumulation rate over 25–185 year intervals are smoothed to along-track length scales comparable to surface undulations in order to identify trends in accumulation that are likely related to changes in climate. Results show that accumulation rates along this profile have decreased in recent decades, which is consistent with core-derived time series of annual accumulation rates measured at the two ends of the radar profile. These results suggest that temporal variability observed in accumulation-rate records from ice cores and GPR profiles can be obscured by spatial influences, although it is possible to resolve temporal signals if the effects of local topography and ice flow are quantified and removed.
Shallow ice cores were obtained from widely distributed sites across the West Antarctic ice sheet, as part of the United States portion of the International Trans-Antarctic Scientific Expedition (US ITASE) program. The US ITASE cores have been dated by annual-layer counting, primarily through the identification of summer peaks in non-sea-salt sulfate (nssSO 4 2-) concentration. Absolute dating accuracy of better than 2 years and relative dating accuracy better than 1 year is demonstrated by the identification of multiple volcanic marker horizons in each of the cores, Tambora, Indonesia (1815), being the most prominent. Independent validation is provided by the tracing of isochronal layers from site to site using high-frequency ice-penetrating radar observations, and by the timing of mid-winter warming events in stable-isotope ratios, which demonstrate significantly better than 1 year accuracy in the last 20 years. Dating precision to AE1 month is demonstrated by the occurrence of summer nitrate peaks and stable-isotope ratios in phase with nssSO 4 2-, and winter-time sea-salt peaks out of phase, with phase variation of <1 month. Dating precision and accuracy are uniform with depth, for at least the last 100 years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.