The Majorana Collaboration is operating an array of high purity Ge detectors to search for the neutrinoless double-beta decay of 76 Ge. The Majorana Demonstrator consists of 44.1 kg of Ge detectors (29.7 kg enriched to 88% in 76 Ge) split between two modules constructed from ultra-clean materials. Both modules are contained in a low-background shield at the Sanford Underground Research Facility in Lead, South Dakota. We present updated results on the search for neutrinoless double-beta decay in 76 Ge with 26.0 ± 0.5 kg-yr of enriched exposure. With the Demonstrator's unprecedented energy resolution of 2.53 keV FWHM at Q ββ , we observe one event in the region of interest with 0.65 events expected from the estimated background, resulting in a lower limit on the 76 Ge neutrinoless double-beta decay half-life of 2.7 × 10 25 yr (90% CL) with a median sensitivity of 4.8 × 10 25 yr (90% CL). Depending on the matrix elements used, a 90% CL upper limit on the effective Majorana neutrino mass in the range of 200-433 meV is obtained. The measured background in the low-background configurations is 11.9 ± 2.0 counts/(FWHM t yr).
The Majorana Demonstrator is searching for neutrinoless double-beta decay (0νββ) in 76 Ge using arrays of point-contact germanium detectors operating at the Sanford Underground Research Facility. Background results in the 0νββ region of interest from data taken during construction, commissioning, and the start of full operations have been recently published. A pulse shape analysis cut applied to achieve this result, named AvsE, is described in this paper. This cut is developed to remove events whose waveforms are typical of multi-site energy deposits while retaining (90 ±3.5)% of single-site events. This pulse shape discrimination is based on the relationship between the maximum current and energy, and tuned using 228 Th calibration source data. The efficiency uncertainty accounts for variation across detectors, energy, and time, as well as for the position distribution difference between calibration and 0νββ events, established using simulations.
The Majorana Demonstrator is an ultra low-background experiment searching for neutrinoless double-beta decay in 76 Ge. The heavily shielded array of germanium detectors, placed nearly a mile underground at the Sanford Underground Research Facility in Lead, South Dakota, also allows searches for new exotic physics. We present the first limits for tri-nucleon decay-specific modes and invisible decay modes for Ge isotopes. We find a half-life limit of 4.9 × 10 25 yr for the decay 76 Ge(ppn) → 73 Zn e + π + and 4.7 × 10 25 yr for the decay 76 Ge(ppp)→ 73 Cu e + π + π + . The half-life limit for the invisible tri-proton decay mode of 76 Ge was found to be 7.5 × 10 24 yr.
A new long optical module (LOM) is under development for IceCube-Gen2, the proposed expansion to the IceCube neutrino observatory at the South Pole. The module is housed in an elongated borosilicate-glass pressure vessel, the size of which is constrained by the borehole diameter, which impacts drilling economy. The designs under consideration use either 16 or 18 4-inch PMTs, conditional on future performance tests, mounted so as to guarantee full angular coverage. Modular electronics have been custom-designed to fit into the available space and to minimize cost and power requirements for the ∼10000 modules to be installed. We will provide an overview of our approach to these design considerations and summarize the results of our tests and simulations. Prototype modules will be installed in the upcoming IceCube Upgrade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.