Concrete plays an important role in the construction industry worldwide. New technology has made for easier development of new types of construction and alternative materials in the concrete area. Cement is the major component in the production of concrete, but its manufacture causes environmental issues and thus there is a need for alternative materials. Geopolymer concrete is a new type of material with that potential, commonly formed by alkali activation of industrial alumina silicate byproducts, such as fly ash and ground granulated blast furnace slag (GGBS). For this paper, mechanical properties of geopolymer concrete with fly ash and GGBS cured under ambient temperatures were studied. Five different grades of concrete were considered. The results were encouraging: The workability of the geopolymer concrete was similar to that of conventional concrete. Experimental results of flexural and splitting tensile strength revealed insignificant variation compared to conventional concrete. The mechanical properties of fly ash and GGBS-based geopolymer concrete were comparable with conventional concrete.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.