Type of Report and Period CoveredContractor Report 14. Sponsoring Agency Code
Supplementary Notes
AbstractThe plane problem of two bonded elastic half planes containing a finite crack perpendicular to and going through the interface is considered. The problem is formulated as a system of singular integral equations with generalized Cauchy kernels. Even though the system has three irregular points, it is shown that the unknown functions are algebraically related at the irregular point on the interface and the integral equations can be solved by a method developed previously. The system of integral equations is shown to yield the same characteristic equation as that for two bonded quarter planes in the general case of the through crack, and the characteristic equation for a crack tip terminating at the interface in the special case.The numerical results given in the paper include the stress intensity factors at the crack tips, the normal and shear components of the stress intensity factors at the singular point on the interface, and the crack surface displacements. The plane problem of two bonded elastic half planes containing a finite crack perpendicular to and going through the interface is considered. The problem is formulated as a system of singular integral equations with generalized Cauchy kernels. Even though the system has three irregular points, it is shown that the unknown functions are algebraically related at the irregular point on the interface and the integral equations can be solved by a method developed previously. The system of integral equations is shown to yield the same characteristic equation as that for two bonded quarter planes in the general case of the through crack, and the characteristic equation for a crack tip terminating at the interface in the special case. The numerical results given in the paper include the stress intensity factors at the crack tips, the normal and shear components of the stress intensity factors at the singular point on the interface, and the crack surface displacements.
A procedure is given for the analysis of axisymmetrically imperfect spherical shells which is not limited by the magnitude of the imperfections. The geometric parameters of the imperfect shell are expressed in terms of those of the perfect shell and known imperfection distribution, and the imperfect shell is solved directly by means of a nonlinear theory. As an application of the proposed procedure, the critical pressures for an axisymmetrically imperfect complete spherical shell are calculated. The results are compared with those predicted by Koiter’s general theory of initial postbuckling behavior, and their asymptotic character is verified.
Transmissive windows designed to operate at low temperatures are subject to repeated thermal cycling, which may crack the window. This paper derives a simple expression for the stresses developed at the edge of a circular window. These stresses depend upon the lowest service temperature, the elastic moduli of window and holder, the mismatch in the coefficients of thermal expansion, and the holder and window thicknesses. For a given material pair, there is a critical holder thickness that will initiate fracture in the window. A graph is provided to facilitate the determination of holder thickness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.