Based on the full BABAR data sample, we report improved measurements of the ratios RðDÞ ¼ BðB ! D À Þ=BðB ! D' À ' Þ and RðD Ã Þ ¼ BðB ! D Ã À Þ=BðB ! D Ã ' À ' Þ, where ' refers to either an electron or muon. These ratios are sensitive to new physics contributions in the form of a charged Higgs boson. We measure RðDÞ ¼ 0:440 AE 0:058 AE 0:042 and RðD Ã Þ ¼ 0:332 AE 0:024 AE 0:018, which exceed the standard model expectations by 2:0 and 2:7, respectively. Taken together, the results disagree with these expectations at the 3:4 level. This excess cannot be explained by a charged Higgs boson in the type II two-Higgs-doublet model. Kinematic distributions presented here exclude large portions of the more general type III two-Higgs-doublet model, but there are solutions within this model compatible with the results.
Based on the full BABAR data sample, we report improved measurements of the ratios R(D(*))=B(B[over ¯]→D(*)τ(-)ν[over ¯](τ))/B(B[over ¯]→D(*)ℓ(ℓ)(-)ν[over ¯](ℓ)), where ℓ is either e or μ. These ratios are sensitive to new physics contributions in the form of a charged Higgs boson. We measure R(D)=0.440±0.058±0.042 and R(D(*))=0.332±0.024±0.018, which exceed the standard model expectations by 2.0σ and 2.7σ, respectively. Taken together, our results disagree with these expectations at the 3.4σ level. This excess cannot be explained by a charged Higgs boson in the type II two-Higgs-doublet model.
A: The CMS apparatus was identified, a few years before the start of the LHC operation at CERN, to feature properties well suited to particle-flow (PF) reconstruction: a highly-segmented tracker, a fine-grained electromagnetic calorimeter, a hermetic hadron calorimeter, a strong magnetic field, and an excellent muon spectrometer. A fully-fledged PF reconstruction algorithm tuned to the CMS detector was therefore developed and has been consistently used in physics analyses for the first time at a hadron collider. For each collision, the comprehensive list of final-state particles identified and reconstructed by the algorithm provides a global event description that leads to unprecedented CMS performance for jet and hadronic τ decay reconstruction, missing transverse momentum determination, and electron and muon identification. This approach also allows particles from pileup interactions to be identified and enables efficient pileup mitigation methods. The data collected by CMS at a centre-of-mass energy of 8 TeV show excellent agreement with the simulation and confirm the superior PF performance at least up to an average of 20 pileup interactions. 3 Reconstruction of the particle-flow elements 9 3.1 Charged-particle tracks and vertices 9 3.1.
2018 JINST 13 P05011 8.5 Measurement of the data-to-simulation scale factors as a function of the discriminator value 76 8.6 Comparison of the measured data-to-simulation scale factors 79 9 Measurement of the tagging efficiency for boosted topologies 82 9.1 Comparison of data with simulation 82 9.2 Efficiency for subjets 83 9.2.1 Misidentification probability 83 9.2.2 Measurement of the b tagging efficiency 84 9.3 Efficiency of the double-b tagger 86 9.3.1 Measurement of the double-b tagging efficiency 86 9.3.2 Measurement of the misidentification probability for top quarks 87
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.