The Lutheran antigens are recently characterized glycoproteins in which the extracellular region contains five immunoglobulin like domains, suggesting some recognition function. A recent abstract suggests that the Lutheran glycoproteins (Lu gps) act as erythrocyte receptors for soluble laminin (Udani, M., Jefferson, S., Daymont, C., Zen, Q., and Telen, M. J. (1996) Blood 88, Suppl. 1, 6 (abstr.)). In the present report, we provided the definitive proof of the laminin receptor function of the Lu gps by demonstrating that stably transfected cells (murine L929 and human K562 cell lines) expressing the Lu gps bound laminin in solution and acquired adhesive properties to laminin-coated plastic dishes but not to fibronectin, vitronectin, transferrin, fibrinogen, or fibrin. Furthermore, expression of either the long-tail (85 kDa) or the short-tail (78 kDa) Lu gps, which differ by the presence or the absence of the last 40 amino acids of the cytoplasmic domain, respectively, conferred to transfected cells the same laminin binding capacity. We also confirmed by flow cytometry analysis that the level of laminin binding to red cells is correlated with the level of Lu antigen expression. Indeed, Lunull cells did not bind to laminin, whereas sickle cells from most patients homozygous for hemoglobin S overexpressed Lu antigens and exhibited an increased binding to laminin, as compared with normal red cells. Laminin binding to normal and sickle red cells as well as to Lu transfected cells was totally inhibited by a soluble Lu-Fc chimeric fragment containing the extracellular domain of the Lu gps. During in vitro erythropoiesis performed by two-phase liquid cultures of human peripheral blood, the appearance of Lu antigens in late erythroid differentiation was concomitant with the laminin binding capacity of the cultured erythroblasts. Altogether, our results demonstrated that long-tail and short-tail Lu gps are adhesion molecules that bind equally well laminin and strongly suggested that these glycoproteins are the unique receptors for laminin in normal and sickle mature red cells as well as in erythroid progenitors.
The time course expression of blood group antigens was examined by flow cytometry using a two-phase liquid culture system that supports the proliferation and maturation of human erythroid progenitors from adult peripheral blood. The progression towards erythroid differentiation was followed by the expression changes of the transferrin receptor (CD71++) and glycophorin A (GPA+). Four main categories of blood group markers were identified: (i) those characterized by an early expression like ABO (A), Kell (K:2) and Rh50 which were detected in the Epo-independent phase 1, (ii) those including GPC (Gerbich, Ge antigens) and Fy6 which were expressed in the late phase 1, (iii) GPA (MN antigens), Wrb (Band 3/GPA interaction), Rh(D, Cc/Ee) and LW which appeared during the Epo-dependent phase 2 and (iv) those like Jk3 and Lub which were expressed in late phase 2. Regarding blood group molecules exhibiting adhesive properties (LW/ICAM-4, Oka and Lu) the most significant event was a sharp decrease of Oka (neurothelin) expression with the concomitant loss of ICAMs expression during the later stage of differentiation. These studies suggest that Oka, ICAMs and LW might contribute to the adhesive interactions involved in the formation of erythroblastic islands and attachment to stroma cells and the extracellular matrix. We also noted an asynchronous expression of the proteins that compose the core of the Rh complex, since Rh50 glycoprotein was expressed earlier than Rh(D, CE) proteins.
Summary. The linkage between blood group-related cell surface proteins and the detergent-insoluble material (DIM) was estimated by flow cytometry using a panel of specific monoclonal antibodies (mAbs) as a comparison of the antibody-binding capacity of intact and Triton-X100-treated cells. Studies were performed with K562 cells expressing endogenous or recombinant proteins and with human erythroid progenitors during their proliferation and differentiation in vitro. Glycophorin C (GPC) was found to be Triton-insoluble in both cellular models. When expressed (erythroid progenitors), Band 3 remained Triton-insoluble. Glycophorin A (GPA), however, behaved as Triton-soluble or insoluble according to the absence (K562) or the presence (erythroid progenitors) of Band 3 respectively. Comparison of the cellular models regarding the proteins that compose the Rh complex also indicated that Rh(D), RhAG and CD47 were resistant to Triton extraction in cells lacking Band 3. Similarly, RhAG and CD47 remained predominantly Triton-insoluble in K562 cells and early progenitors before Rh and Band 3 expression. Further analysis showed that the Kell protein was DIM-associated. In contrast, CD99 and DARC (Fy) proteins were not, or were very poorly, DIMassociated. Additionally, the adhesion molecules CD44 and Lu were completely or partially resistant to detergent extraction respectively. Deletion of the Lu cytoplasmic tail or its replacement by the cytoplasmic domain of GPC resulted in significant increase or decrease of the Triton solubility of the transfected proteins respectively. These data suggest that Triton insolubility of Lu results in part from direct attachment of its cytoplasmic tail with the cytoskeleton. We assume that this method should provide a useful tool to map interaction sites localized in the cytoplasmic domain of recombinant transmembrane proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.