Although ows in combustors contain considerable noise, arising from several kinds of sources, there is a sound basis for treating organized oscillations as distinct motions. That has been an essential assumption incorporated in virtually all treatments of combustion instabilities. However, certain characteristics of the organized or deterministic motions seem to have the nature of stochastic processes. For example, the amplitudes in limit cycles always exhibit a random character, and even the occurrence of instabilities seems occasionally to possess some statistical features. Analysis of nonlinear coherent motions in the presence of stochastic sources is, therefore, an important part of the theory. We report a few results for organized oscillations in the presence of noise. The most signi cant de ciency is that, because of the low level of current understanding, the stochastic sources of noise are modeled in ad hoc fashion and are not founded on a solid physical basis appropriate to combustion chambers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.