Mitochondria are involved in many cellular processes; mitochondrial dysfunctions have been associated with apoptosis, aging, and a number of pathological conditions, including osteoarthritis (OA). Mitochondrial proteins are attractive targets for the study of metabolism of the chondrocyte, the unique cell type present in mature cartilage, and its role in tissue degradation. Using a proteomics approach based on two-dimensional DIGE and MALDI-TOF/ TOF mass spectrometric identification of mitochondriaenriched protein fractions from human articular chondrocytes, we analyzed mitochondrial protein changes that are characteristic of OA chondrocytes. A total of 73 protein forms were unambiguously identified as significantly altered in OA; 23 of them have been previously described as mitochondrial. An extensive statistical and cluster analysis of the data revealed a mitochondrial protein profile characteristic for OA. This pattern includes alterations in energy production, maintenance of mitochondrial membrane integrity, and free radical detoxification. Real time PCR, Western blot, and immunohistofluorescence assays confirmed a significant decrease of the major mitochondrial antioxidant protein manganese-superoxide dismutase (SOD2) in the superficial layer of OA cartilage. As possible outputs for this antioxidant deficiency, we found an increase of intracellular reactive oxygen species generation in OA chondrocytes and also verified an OA-dependent increase in the mitochondrial tumor necrosis factor-␣ receptor-associated protein 1 (TRAP1), a chaperone with a reported reactive oxygen species antagonist role. Our results describe the differences between the mitochondrial protein profiles of normal and OA chondrocytes, demonstrating that mitochondrial dysregulation occurs in cartilage cells during OA and highlighting redox imbalance as a key factor in OA The mitochondrion is one of the most complex and important organelles found in eukaryotic cells and carries out a wide variety of biochemical processes. Mitochondria are critical subcellular organelles responsible for energy production through the coupling of respiration to the generation of ATP. Mitochondria consist of four components: an outer membrane, an intermembrane space, an inner membrane, and a matrix. These components all function in concert to convert pyruvate and fatty acids to acetyl CoA, which is metabolized by the citric acid cycle to produce NADH. High energy electrons from NADH are then passed to oxygen by means of the respiratory chain in the inner membrane, producing ATP by a chemiosmotic process. Transcription and translation take place in mitochondria, which also actively import proteins and metabolites from the cytosol, influence programmed cell death, and respond to cellular signals such as oxidative stress (1). In addition to their central role in energy metabolism, mitochondria are involved in many cellular processes; mitochondrial dysfunctions have been associated with apoptosis, aging, and a number of pathological conditions, including Parkinson d...
Biofilm formation is one of the main causes for the persistence of Acinetobacter baumannii, a pathogen associated with severe infections and outbreaks in hospitals. Here, we performed comparative proteomic analyses (2D-DIGE and MALDI-TOF/TOF and iTRAQ/SCX-LCÀMS/MS) of cells at three different conditions: exponential, late stationary phase, and biofilms. These results were compared with alterations in the proteome resulting from exposure to a biofilm inhibitory compound (salicylate). Using this multiple-approach strategy, proteomic patterns showed a unique lifestyle for A. baumannii biofilms and novel associated proteins. Several cell surface proteins (such as CarO, OmpA, OprD-like, DcaP-like, PstS, LysM, and Omp33), as well as those involved in histidine metabolism (like Urocanase), were found to be implicated in biofilm formation, this being confirmed by gene disruption. Although L-His uptake triggered biofilms efficiently in wild-type A. baumannii, no effect was observed in Urocanase and OmpA mutants, while a slight increase was observed in a CarO deficient strain. We conclude that Urocanase plays a crucial role in histidine metabolism leading to biofilm formation and that OmpA and CarO can act as channels for L-His uptake. Finally, we propose a model in which novel proteins are suggested for the first time as targets for preventing the formation of A. baumannii biofilms.
Osteoarthritis (OA) is the most common rheumatic pathology and is characterized primarily by articular cartilage degradation. Despite its high prevalence, there is no effective therapy to slow disease progression or regenerate the damaged tissue. Therefore, new diagnostic and monitoring tests for OA are urgently needed, which would also promote the development of alternative therapeutic strategies. In the present study, we have performed an iTRAQ-based quantitative proteomic analysis of secretomes from healthy human articular cartilage explants, comparing their protein profile to those from unwounded (early disease) and wounded (advanced disease) zones of osteoarthritic tissue. This strategy allowed us to identify a panel of 76 proteins that are distinctively released by the diseased tissue. Clustering analysis allowed the classification of proteins according to their different profile of release from cartilage. Among these proteins, the altered release of osteoprotegerin (decreased in OA) and periostin (increased in OA), both involved in bone remodelling processes, was verified in further analyses. Moreover, periostin was also increased in the synovial fluid of OA patients. Altogether, the present work provides a novel insight into the mechanisms of human cartilage degradation and a number of new cartilage-characteristic proteins with possible biomarker value for early diagnosis and prognosis of OA.
IntroductionChondroitin sulfate (CS) and glucosamine sulfate (GS) are symptomatic slow-acting drugs for osteoarthritis (OA) widely used in clinic. Despite their widespread use, knowledge of the specific molecular mechanisms of their action is limited. The aim of this work is to explore the utility of a pharmacoproteomic approach for the identification of specific molecules involved in the pharmacological effect of GS and CS.MethodsChondrocytes obtained from three healthy donors were treated with GS 10 mM and/or CS 200 μg/mL, and then stimulated with interleukin-1β (IL-1β) 10 ng/mL. Whole cell proteins were isolated 24 hours later and resolved by two-dimensional electrophoresis. The gels were stained with SYPRORuby. Modulated proteins were identified by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF/TOF) mass spectrometry. Real-time PCR and Western blot analyses were performed to validate our results.ResultsA total of 31 different proteins were altered by GS or/and CS treatment when compared to control. Regarding their predicted biological function, 35% of the proteins modulated by GS are involved in signal transduction pathways, 15% in redox and stress response, and 25% in protein synthesis and folding processes. Interestingly, CS affects mainly energy production (31%) and metabolic pathways (13%), decreasing the expression levels of ten proteins. The chaperone GRP78 was found to be remarkably increased by GS alone and in combination with CS, a fact that unveils a putative mechanism for the reported anti-inflammatory effect of GS in OA. On the other hand, the antioxidant enzyme superoxide dismutase 2 (SOD2) was significantly decreased by both drugs and synergistically by their combination, thus suggesting a drug-induced decrease of the oxidative stress caused by IL-1β in chondrocytes.ConclusionsCS and GS differentially modulate the proteomic profile of human chondrocytes. This pharmacoproteomic approach unravels the complex intracellular mechanisms that are modulated by these drugs on IL1β-stimulated human articular chondrocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.