The mechanism of hadronic interactions at very high energies is still unclear. Available accelerator data constrain weakly the forward rapidity region which determines the development of atmospheric showers. This ignorance is one of the main sources of uncertainty in the determination of the energy and composition of the primary in hadron-induced atmospheric showers. In this paper we examine the effect on the shower development of two kinds of collective effects in high-energy hadronic interactions which modify the production of secondary particles. The first mechanism, modeled as string fusion, affects strongly the central rapidity region but only slightly the forward region and is shown to have very little effect on the shower development. The second mechanism implies a very strong stopping; it affects modestly the profile of shower maximum but broadens considerably the number distribution of muons at ground. For the latter mechanism, the development of air showers is faster mimicking a heavier projectile. On the other hand, the number of muons at ground is lowered, resembling a shower generated by a lighter primary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.