India has experienced significant Land-Use and Land-Cover Change (LULCC) over the past few decades. In this context, careful observation and mapping of LULCC using satellite data of high to medium spatial resolution is crucial for understanding the long-term usage patterns of natural resources and facilitating sustainable management to plan, monitor and evaluate development. The present study utilizes the satellite images to generate national level LULC maps at decadal intervals for 1985, 1995 and 2005 using onscreen visual interpretation techniques with minimum mapping unit of 2.5 hectares. These maps follow the classification scheme of the International Geosphere Biosphere Programme (IGBP) to ensure compatibility with other global/regional LULC datasets for Remote Sens. 2015, 7 2403 comparison and integration. Our LULC maps with more than 90% overall accuracy highlight the changes prominent at regional level, i.e., loss of forest cover in central and northeast India, increase of cropland area in Western India, growth of peri-urban area, and relative increase in plantations. We also found spatial correlation between the cropping area and precipitation, which in turn confirms the monsoon dependent agriculture system in the country. On comparison with the existing global LULC products (GlobCover and MODIS), it can be concluded that our dataset has captured the maximum cumulative patch diversity frequency indicating the detailed representation that can be attributed to the on-screen visual interpretation technique. Comparisons with global LULC products (GlobCover and MODIS) show that our dataset captures maximum landscape diversity, which is partly attributable to the on-screen visual interpretation techniques. We advocate the utility of this database for national and regional studies on land dynamics and climate change research. The database would be updated to 2015 as a continuing effort of this study.
We present a 3D gravity inversion technique, based on the Marquardt algorithm, to analyze gravity anomalies attributable to basement interfaces above which the density contrast varies continuously with depth. The salient feature of this inversion is that the initial depth of the basement is not a required input. The proposed inversion simultaneously estimates the depth of the basement interface and the regional gravity background. Applicability and efficacy of the inversion is demonstrated with a synthetic model of a density interface. We analyze the synthetic gravity anomalies (1) solely because of the structure, (2) in the presence of a regional gravity background, and (3) in the presence of both random noise and regional gravity background. The inverted structure remains more or less the same, regardless of whether the regional background is simulated with a second-degree polynomial or a bilinear equation. The depth of the structure and estimated regional background deviate only modestly from the assumed ones in the presence of random noise and regional background. The analyses of two sets of real field data, one over the Chintalpudi subbasin, India, and another over the Pannonian basin, eastern Austria, yield geologically plausible models with the estimated depths that compare well with drilling data.
We derive an analytical expression for gravity anomalies of an inclined fault with density contrast decreasing parabolically with depth. The effect of the regional background, particularly the interference from neighboring sources of a fault structure, is ascribed by a polynomial equation. We have developed an inversion technique employing the ridge‐regression iterative algorithm to infer the shape parameters of the fault structure, in addition to the effect of regional background. We demonstrate the validity of the proposed technique by inverting a gravity anomaly of a theoretical model, both with and without adding a regional background. The technique is insensitive to the effect of regional background. Two density‐depth models of the Godavari subbasin in India are used in our interpretation of the gravity anomalies of the Ahiri‐Cherla master fault. The interpreted results of a parabolic density model are found to be more geologically reasonable in comparison with the constant density model. The variations of the misfit function of the theoretical and observed gravity anomalies, the damping factor, and the shape parameters of the fault against the iteration number indicate the reliability of the interpretation.
An integrated geophysical strategy comprising deep electrical resistivity and gravity data was devised to image subbasalt sedimentary basins. A 3D gravity inversion was used to determine the basement structure of the Permian sediments underlying the Cretaceous formation of the Jam River Basin in India. The thickness of the Cretaceous formation above the Permian sediments estimated from modeling 60 deep-electric-sounding data points agrees well with drilling information. The gravity effect of mass deficit between the Cretaceous and Permian formations was found using 3D forward modeling and subsequently removed from the Bouguer gravity anomaly along with the regional gravity field. The modified residual gravity field was then subjected to3D inversion to map the variations in depth of the basement beneath the Permian sediments. Inversion of gravity data resulted in two basement ridges, running almost east to west, dividing the basin into three independent depressions. It was found that the Katol and Kondhali faults were active even during post-Cretaceous time and were responsible for the development of the subsurface basement ridges in the basin. The inferred 3D basement configuration of the basin clearly brought out the listric nature of these two faults. Further, the extension of the Godavari Basin into the Deccan syneclise and the fact that the source-rock studies show the presence of hydrocarbons in the Sironcha block in the northern part of the Godavari Basin also shed some light on the hydrocarbon potential of the Jam River Basin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.