The type 1 insulin-like growth factor receptor (IGF-1R), a transmembrane tyrosine kinase, is widely expressed across many cell types in foetal and postnatal tissues. Activation of the receptor following binding of the secreted growth factor ligands IGF-1 and IGF-2 elicits a repertoire of cellular responses including proliferation, and the protection of cells from programmed cell death or apoptosis. As a result, signalling through the IGF-1R is the principal pathway responsible for somatic growth in foetal mammals, whereas somatic growth in postnatal animals is achieved through the synergistic interaction of growth hormone and the IGFs. Forced overexpression of the IGF-1R results in the malignant transformation of cultured cells: conversely, downregulation of IGF-1R levels can reverse the transformed phenotype of tumour cells, and may render them sensitive to apoptosis in vivo. Elevated levels of IGF-IR are observed in a variety of human tumour types, whereas epidemiological studies implicate the IGF-1 axis as a predisposing factor in the pathogenesis of human breast and prostate cancer. The IGF-1R has thus emerged as a therapeutic target for the development of antitumour agents. Recent progress towards the elucidation of the three-dimensional structure of the extracellular domain of the IGF-1R represents an opportunity for the rational assembly of small molecule antagonists of receptor function for clinical use.
Juvenile hormone (JH) is a sesquiterpenoid of vital importance for insect development, yet the molecular basis of JH signaling remains obscure, mainly because a bona fide JH receptor has not been identified. Mounting evidence points to the basic helix-loophelix (bHLH)/Per-Arnt-Sim (PAS) domain protein Methoprene-tolerant (Met) as the best JH receptor candidate. However, details of how Met transduces the hormonal signal are missing. Here, we demonstrate that Met specifically binds JH III and its biologically active mimics, methoprene and pyriproxyfen, through its C-terminal PAS domain. Substitution of individual amino acids, predicted to form a ligand-binding pocket, with residues possessing bulkier side chains reduces JH III binding likely because of steric hindrance. Although a mutation that abolishes JH III binding does not affect a Met-Met complex that forms in the absence of methoprene, it prevents both the ligand-dependent dissociation of the Met-Met dimer and the ligand-dependent interaction of Met with its partner bHLH-PAS protein Taiman. These results show that Met can sense the JH signal through direct, specific binding, thus establishing a unique class of intracellular hormone receptors. structure modeling | insecticide action | metamorphosis | Tribolium | Drosophila J uvenile hormone (JH) prevents adult transition (metamorphosis) of insect larvae until they have attained an appropriate stage (1, 2), and it typically stimulates oogenesis in adult females (3). How JH achieves its function remains unclear, mainly because a JH receptor has long eluded identification (4). The lipophilic nature of the sesquiterpene JH suggests an intracellular receptor, yet none of the known insect nuclear hormone receptors have been linked with the biological function of JH. A screen for Drosophila mutants resistant to methoprene (5), a JH mimic and a widely used insecticide (6), uncovered the Methoprene-tolerant (Met) protein containing a basic helix-loop-helix (bHLH) motif followed by two Per-Arnt-Sim (PAS) domains (7). Recombinant Drosophila Met was shown to bind JH at physiological (nanomolar) concentrations and to mediate a weak JH-and methoprene-dependent transcriptional activation in vitro (8). However, Met-null mutant flies were viable and fertile (5), leaving the notion that Met is a putative JH receptor unsupported with an anticipated developmental phenotype. Latest reports show that, in Drosophila, Met might functionally overlap with its paralog, encoded by the germ cell-expressed (gce) gene. Gce can increase sensitivity of Met-null mutants to methoprene (9), and only simultaneous loss of both Met and Gce is lethal (10). However, the actual mode of interaction between JH/methoprene and Met or Gce still remains unclear.Knockdown of the single Met gene in the flour beetle Tribolium castaneum induced beetle larvae to pupate before reaching their final instar (11), producing a precocious metamorphosis phenotype similar to that caused by loss of JH itself (12).Conversely, removal of Met precluded inhibition of adult ...
Possible terms to include :Term (definition) Alternative or related terms 3D QSAR (three-dimensional quantitative structureactivity relationships)Comparative molecular field analysis (CoMFA), Comparative molecular similarity index analysis (COMSIA), molecular field analysis.
The insulin receptor is a phylogenetically ancient tyrosine kinase receptor found in organisms as primitive as cnidarians and insects. In higher organisms it is essential for glucose homeostasis, whereas the closely related insulin-like growth factor receptor (IGF-1R) is involved in normal growth and development. The insulin receptor is expressed in two isoforms, IR-A and IR-B; the former also functions as a high-affinity receptor for IGF-II and is implicated, along with IGF-1R, in malignant transformation. Here we present the crystal structure at 3.8 A resolution of the IR-A ectodomain dimer, complexed with four Fabs from the monoclonal antibodies 83-7 and 83-14 (ref. 4), grown in the presence of a fragment of an insulin mimetic peptide. The structure reveals the domain arrangement in the disulphide-linked ectodomain dimer, showing that the insulin receptor adopts a folded-over conformation that places the ligand-binding regions in juxtaposition. This arrangement is very different from previous models. It shows that the two L1 domains are on opposite sides of the dimer, too far apart to allow insulin to bind both L1 domains simultaneously as previously proposed. Instead, the structure implicates the carboxy-terminal surface of the first fibronectin type III domain as the second binding site involved in high-affinity binding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.