Hand Gesture Recognition (HGR) refers to identifying various hand postures used in Sign Language Recognition (SLR) and Human Computer Interaction (HCI) applications. Complex background in uncontrolled environmental condition is the major challenging issue which impacts the recognition accuracy of HGR system. This can be effectively addressed by discarding the background using suitable semantic segmentation method, where it predicts the hand region pixels into foreground and rest of the pixels into background. In this paper, we have analyzed and evaluated well known semantic segmentation architectures for hand region segmentation using both RGB and depth data. Further, ensemble of segmented RGB and depth stream is used for hand gesture classification through probability score fusion. Experimental results shows that the proposed novel framework of Semantic Segmentation and Ensemble Classification (SSEC) is suitable for static hand gesture recognition and achieved F1-score of 88.91% on OUHANDS test dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.