Metal structures for osteosynthesis available in veterinary orthopedics are not able to compensate for the lost elements of bone tissue in complex splinter fractures. It is prompt the use of hydroxyappatite materials that replaced bone defects for maintenance of osteoconductive function, and ideally would combine osteointegration and osteoinductive properties. However, their influence on the biological processes of fracture consolidation which go through a number of successive stages and end with the formation of bone tissue in the fracture zone identical to the maternal, is insufficiently substantiated according to the criteria of the molecular biological phase of reparative osteogenesis. The aim of the study was to investigate the dynamics of biochemical osteotropic parameters and the level of NO using silicon-doped ceramics for fractures heeling in dogs. Materials and methods. The animals suffering of fractures that were admitted to the faculty clinic were divided into control (n=7) and experimental (n=7) groups. In both groups, extracortical osteosynthesis was performed with a support plate from an unalloyed titanium alloy. In the control group, bone defects were left to heal under spontaneous blood clot, and in the experimental group, they were replaced with ceramic based on hydroxyapatite with β-tricalciumphosphate doped with silicon (HA/β-TCP/l-Si–3).Blood samples were taken after the injury no later than the 48th day, and on the 3th, 12th, 21th, 42th and 60th days after osteosynthesis. To increase the objectivity of the biochemical analysis, we additionally formed a group of clinically healthy dogs that were admitted to the clinic for routine vaccination (n=10). It included the spectrophotometric determination of the content of NO, BALP, TRACP, Ca, P, Mg, total protein in blood serum, and fibrinogen in blood plasma. Research results. A clinical study showed that in the case of using HA/β-TCP/l-Si–3for splinter fractures, the stages of reparative osteogenesis are more optimized in time, and their consolidation occurs on average 19 days earlier than in the control group. The results of the biochemical study showed that when using HA/β-TCP/l-Si–3, it is accompanied by a peak NO value already on the third day, which is significantly higher than in the control group and indicates early angiogenesis in the research group. In terms of TRACP, the period of osteoresorption in the control group was permanent with little expressed peaks of activity. However, in the research group, the peak of TRACP activity is limited to 12 and 21 days, which is evidence of an optimized inflammatoryresorptive phase. In parallel with this, the activity of BALP increases, which indicates the consistency of the stages of reparative osteogenesis and provides an optimized and accelerated consolidation of fractures in the research group. Conclusion. The dynamics of NO, BALP and TRACP pathochemically substantiates the optimized reparative osteogenesis when using HA/β-TCP/l-Si–3 for bone defects replacement in cases of splinter fractures of tubular bones. Key words: bone markers, bone isoenzyme of alkaline phosphatase, NO, tartrate-resistant acid phosphatase, fibrinogen, calcium, phosphorus.
Complex comminuted fractures are accompanied by development of bone defects and loss of reparative potential of the bone tissue in the region of the trauma. This brings the necessity of using implants with optimum osteoconductive and osteointegration properties. The objective of the study was determining the condition of biochemical bone markers and peculiarities of histomorphological changes under the influence of ceramic hydroxyapatite (HA) implants with various physical-chemical properties in the conditions of diaphyseal bone defects in rabbits. We composed control and experimental groups of rabbits with 10 individuals in each with diaphyseal bone defects (3 mm) of the radial bones formed under general anesthesia. In one experimental group, they were filled with granules of hydroxyapatite with α-tricalcium phosphate, and in the second group – with β-tricalcium phosphate, alloyed with Si. In the control rabbits, the defects healed under a blood clot. Blood was analyzed on the 3rd, 7th, 14th, 21st and 42nd days, and as reference we used biochemical parameters of blood of clinically healthy rabbits (n = 10). Bone biopsied materials were taken on days 21–42 under general anesthesia. When using hydroxyapatite with β-tricalcium phosphate, alloyed with Si, we determined early intensification of the levels of nitrogen oxide, angiogenesis and development of bone regenerate in conditions of shortening of inflammatory resorption phase, which was verified according to the level of tartrate-resistant acid phosphatase. According to the level of bone isoenzyme of alkaline phosphatase in the blood serum of animals of the control group, the reparative osteogenesis developed slowly and peaked on day 42, whereas in animals implanted with α-tricalcium phosphate, its development peaked peaked on days 14–42, and when using Si-alloy – on days 7–14. Histomorphologically, on the 21st day, in the case of replacement of bone defect with hydroxyapatite with α-tricalcium phosphate, coarse-fibered type of bone regenerate developed with no dense contact with the elements of the regenerate, while spongy bone trabeculae occurred when hydroxyapatite was applied with β-tricalcium phosphate alloyed with Si, and the control rabbits were observed to be in the stage of cartilaginous callus. On the 42nd day, under the influence of implants of hydroxyapatite with α-tricalcium phosphate, the spongy bone tissue transformed into compact tissue with further mineralization. With implants alloyed with Si, there occurred compact bone tissue, and bone regenerates of the control animals were regions of coarse-fibered and spongy bone tissue without dense contact with the parent bone. This study revealed that hydroxyapatite with β-tricalcium phosphate alloyed with Si had notable osteoinductive and osteointegrating properties, as indicated by early angiogenesis and osteoblast reaction, positive dynamics of the marker biochemical parameters with faster and better development of bone regenerate as spongy bone trabeculae.
The study of the structure of morbidity or individual nosological groups of diseases involves not only establishing the degree of their prevalence, but also, depending on the methodology of such studies, makes it possible to identify the prevailing clinical and morphological forms, the objectivity of diagnostic algorithms and the effectiveness of therapeutic measures, which makes it possible to assess the state of the solution or another clinical problem, adjust the ways to solve it and improve clinical management and form directions for improving the market for therapeutic agents. The aim of the work was to establish the structure of the types of different clinical and radiological forms of comminuted bone fractures in dogs according to the principles of the international classification AO/ASIF. We performed a clinical and radiological assessment of comminuted fractures of long bones in dogs (n=24) with spontaneous bone injuries admitted to the Interdepartmental Small Animal Clinic of Belotserkovsky NAU, in which 26 comminuted fractures were diagnosed. The main forcing ship fractures were car accidents - 58.4%, alarming world causas unverified creatures of bloodshed - 20.8%, injuries caused by other creatures - 12.5% and 8.3% - falling from height. According to thestate factor, the removal from white grains is 70.8%, and in 62.5% - animal with weight of 11 kg, and in 54.2% - dogs of different breeds, while 45.8% were outbred. Comminuted fractures according to morphosegmental localization were: diaphyseal - 46.2%, metaphyseal - 42.3%, epiphyseal 11.5%. According to the principles of the international classification AO / ASIF, their largest share - 50%, belongs to type C, 46.2% - to type B and the smallest - 3.8%, to the simplest type A. Within the subgroups of the largest - 19.2 %, the proportion for subgroups B1, B2 and C2 turned out to be slightly less - 15.4% for C1 and C3 and very small - 7.8% and 3.8% for B3 and A2, respectively. Consequently, the morphosegmental localization of the typification of the type and complexity of fractures according to the principles of the AO/ASIF classification provides more detailed information, which creates the basis for the proposed choice of the most rational methods and means of osteosynthesis. Key words: osteosynthesis, reparative osteogenesis, femur, tibia, radius, ulna, humerus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.