This paper describes the status of the pre-conceptual design activities in Europe to advance the technical basis of the design of a DEMOnstration Fusion Power Plant (DEMO) to come in operation around the middle of this century with the main aims of demonstrating the production of few hundred MWs of net electricity, the feasibility of operation with a closedtritium fuel cycle, and maintenance systems capable of achieving adequate plant availability. This is expected to benefit as much as possible from the ITER experience, in terms of design, licensing, and construction. Emphasis is on an integrated design approach, based on system engineering, which provides a clear path for urgent R&D and addresses the main design integration issues by taking account critical systems interdependencies and inherent uncertainties of important design assumptions (physics and technology). A design readiness evaluation, together with a technology maturation and down selection strategy are planned through structured and transparent Gate Reviews. By embedding industry experience in the design from the beginning it will ensure that early attention is given to technology readiness and industrial feasibility, costs, maintenance, power conversion, nuclear safety and licensing aspects.
With the first tokamak designed for full nuclear operation now well into final assembly (ITER), and a major new research tokamak starting commissioning (JT60SA), nuclear fusion is becoming a mainstream potential energy source for the future. A critical part of the viability of magnetic confinement for fusion is superconductor technology. The experience gained and lessons learned in the application of this technology to ITER and JT60SA, together with new and improved superconducting materials, is opening multiple routes to commercial fusion reactors. The objective of this roadmap is, through a series of short articles, to outline some of these routes and the materials/technologies that go with them.
We investigate the properties of Josephson junction networks with inhomogeneous architecture. The networks are shaped as "square comb" planar lattices on which Josephson junctions link superconducting islands arranged in the plane to generate the pertinent topology. Compared to the behavior of reference linear arrays, the temperature dependencies of the Josephson currents of the branches of the network exhibit relevant differences. The observed phenomena evidence new and surprising behavior of superconducting Josephson arrays as well as remarkable similarities with bosonic junction arrays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.