This work presents a joint experimental and numerical study of global characteristics and mixing behavior of underexpanded methane jets at high-pressure conditions in a Constant Volume Chamber. Injection pressures of 200, 250, and 300 bar and pressure ratios of 4, 5, 6, 8, and 10 at each of those pressures have been investigated. Tracer LIF with acetone as tracer has been applied to experimentally quantify the mixing of methane and quiescent air. In order to exploit the symmetry of the configuration, accompanying simulations have been carried out in Reynolds-Averaged Navier-Stokes framework with the k – w SST turbulence model and real-gas modelling based on the Soave-Redlich-Kwong Equation of State has been employed to account for high-pressure corrections in thermodynamic and caloric properties. The experiments confirm the hyperbolic decay of axial fuel concentration and the Gaussian shape of traverse concentration profiles in the self-similar region of the jets, while simulation results match well with experimentally determined fuel concentration fields. It is found that scaling laws proposed in literature for steady-state jet propagation can qualitatively interpret the effect of injection variations on jet tip penetration and volume. Increasing pressure ratio at fixed injection pressure leads to the formation of slightly richer jets, with slightly smaller mass percentage in the range of air-to-fuel ratios most favorable to autoignition. By contrast, increasing pressure ratio at fixed chamber pressure leads to virtually identical Probability Distribution Functions of local air-to-fuel ratios and the same is observed when employing a fixed pressure ratio at higher pressure levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.