Two novel antifungal hevein-like peptides, SmAMP1.1a and SmAMP2.2a, were previously isolated from seeds of Stellaria media. It has been established that these peptides accumulate in this weed as a result of proteolysis of two propeptides, pro-SmAMP1 and pro-SmAMP2. The primary structure of these propeptides is unique; in addition to having a signal peptide and negatively charged C-terminus, each of these structures consists of two hevein-like peptides of different length separated by a space rather than a single peptide. In this work, we demonstrated that the expression of the pro-SmAMP1 and pro-SmAMP2 genes was tissue-specific and increased substantially under exposure to fungal infection. To elucidate whether S. media has any advantages in defending against phytopathogens due to its unusual structure of pro-SmAMP1 and pro-SmAMP2, on the basis of the pro-SmAMP1 gene, we created three genetic constructs. Arabidopsis and tobacco plants were subsequently transformed with these constructs. Transgenic plants bearing the full-length pro-SmAMP1 gene exhibited the best resistance to the phytopathogens Bipolaris sorokiniana and Thielaviopsis basicola. The resistance of S. media plants to phytopathogenic fungi was likely due to the fungal-inducible expression of pro-SmAMP1 and pro-SmAMP2 genes, and due to the specific features of the primary structure of the corresponding propeptides. As a result of the processing of these propeptides, two different antimicrobial peptides were released simultaneously. Based on our results, we conclude that the genes for antimicrobial peptides from S. media may be promising genetic tools for the improvement of plant resistance to fungal diseases.
BackgroundIn a previous study we found that in chickweed the expression level of the pro-SmAMP2 gene was comparable or even higher to that of the β-actin gene. This high level of the gene expression has attracted our attention as an opportunity for the identification of novel strong promoters of plant origin, which could find its application in plant biotechnology. Therefore, in the present study we focused on the nucleotide sequence identification and the functional characteristics of the pro-SmAMP2 promoter in transgenic plants.ResultsIn chickweed (Stellaria media), a 2120 bp promoter region of the pro-SmAMP2 gene encoding antifungal peptides was sequenced. Six 5′-deletion variants −2120, −1504, −1149, −822, −455, and −290 bp of pro-SmAMP2 gene promoter were fused with the coding region of the reporter gene gusA in the plant expression vector pCambia1381Z. Independent transgenic plants of tobacco Nicotiana tabacum were obtained with each genetic structure. GUS protein activity assay in extracts from transgenic plants showed that all deletion variants of the promoter, except −290 bp, expressed the gusA gene. In most transgenic plants, the GUS activity level was comparable or higher than in plants with the viral promoter CaMV 35S. GUS activity remains high in progenies and its level correlates positively with the amount of gusA gene mRNA in T3 homozygous plants. The activity of the рro-SmAMP2 promoter was detected in all organs of the transgenic plants studied, during meiosis and in pollen as well.ConclusionOur results show that the рro-SmAMP2 promoter can be used for target genes expression control in transgenic plants.Electronic supplementary materialThe online version of this article (doi:10.1186/s12896-016-0273-x) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.