We have studied diverse vector and hybrid light fields, including those with multiple polarization singularities, and have derived relationships for polarization singularity indices based on the familiar Berry formula, which is normally utilized to find the topological charge of a scalar vortex light field. The fields with pure polar-angle-dependent polarization in the beam cross-section are shown to feature either polarization singularity lines outgoing from the center or a single polarization singularity point at the beam center. The fields with pure radial-variable-dependent polarization are shown to have no polarization singularities and zero polarization index. The vector fields with both polar-angle- and radial-variable-dependent polarization are shown to have multiple polarization singularity points that are scattered across the cross-section. A vector field with higher-order radial polarization and a real parameter was also studied and was shown to feature either several polarization singularity lines outgoing from the center or a central singular point, depending on the parameter value. Notably, at different parameter values, the polarization singularity index of such a field can take half-integer, integer, or zero values.
It is known that in the cross-section of a high-order cylindrical vector beam (CVB), polarization is locally linear. The higher the beam order, the higher the number of full rotations of the vector of local linear polarization when passing along a contour around the optical axis. It is also known that both in the input and in the focal planes, the CVB has neither the spin angular momentum (SAM), nor the orbital angular momentum (OAM). We demonstrate here that near the focal plane of the CVB (before and after the focus), an even number of local subwavelength areas is generated, where the polarization vector in each point is rotating. In addition, in the neighboring areas, polarization vectors are rotating in different directions, so that the longitudinal component of SAM vectors in these neighboring areas is of the opposite sign. In addition, after the beam passes the focus, the rotation direction of the polarization vector in each point of the beam cross-section is changed to the opposite one. Such spatial separation of the left and right rotation of the polarization vectors manifests so that the optical spin Hall effect takes place.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.