General properties of accretion onto isolated stellar-mass black holes in the Galaxy are discussed. An analysis of plasma internal energy growth during the infall is performed. Adiabatic heating of collisionless accretion flow due to magnetic adiabatic invariant conservation is 25% more efficient than in the standard non-magnetized gas case. It is shown that magnetic field line reconnections in discrete current sheets lead to significant nonthermal electron component formation, which leads to a formation of a hard (UV, X-ray, up to gamma), highly variable spectral component in addition to the standard synchrotron optical component first derived by Shvartsman generated by thermal electrons in the magnetic field of the accretion flow. Properties of accretion flow emission variability are discussed. Observation results of two single black hole candidates -gravitational lens MACHO-1999-BLG-22 and radio-loud X-ray source with featureless optical spectrum J1942+10 -in optical band with high temporal resolution are presented and interpreted in the framework of the proposed model.
Abstract. Multicolor Panoramic Photometer-Polarimeter (MPPP) with a time resolution of 1 microsecond has been built based on a PSD and used at the 6-meter telescope in SAO (Russia). The device allows registration of the photon fluxes in four photometric bands simultaneously and finding values of 3 Stokes parameters. MPPP consists of Position-Sensitive Detector (PSD), acquisition MANIA-system, polarization unit and a set of dichroic filters. MPPP gives a possibility of detecting photons in 2 pupils with a size of 10 -15 arc sec centered on the object and comparison star positions simultaneously. The first half of the object photon flux passes through the phase rotating plate and polarizer, and the second one through the polarizer alone. MPPP registers in each of the 4 filters four images of the object with different orientations of polarization plane and one image of a comparison star. It allows measuring instantaneous Stokes parameters. The main astrophysical problems to be solved with MPPP are as follows: investigation of optical pulsars; study of GRB phenomenon in the optical range; searching for single black holes; study of fast variability of X-ray binaries. As an illustration of MPPP use, the results of observations at the 6-meter telescope of Crab pulsar and soft gamma repeater are presented.
Abstract. The Position-Sensitive Detector (PSD) for photometrical and spectral observation on the 6-meter optical telescope of the Special Astrophysical Observatory (Russia) is described. The PSD consists of a positionsensitive tube, amplifiers of output signals, analog-to-digital converters (ADC) and a digital logic plate, which produces a signal for ADC start and an external strob pulse for reading information by registration system. If necessary, the thermoelectric cooler can be used. The position-sensitive tube has the following main elements: a photocathode, electrodes of inverting optics, a block of microchannel plates (MCP) and a position-sensitive collector of quadrant type. The main parameters of the PSD are the diameter of the sensitive surface is 25 mm, the spatial resolution is better than 100 µm in the centre and a little worse on the periphery; the dead time is near 0.5 µs; the detection quantum efficiency is defined by the photocathode and it is not less than 0.1, as a rule; dark current is about hundreds of cps, or less, when cooling. PSD spectral sensitivity depends on the type of photocathode and input window material. We use a multialkali photocathode and a fiber or UV-glass, which gives the short-wave cut of 360 nm or 250 nm, respectively.
The fine structure and the variations of the optical pulse shape and phase of the Crab pulsar are studied on various time scales. The observations have been carried out on 4-m William Hershel and 6-m BTA telescopes with APD photon counter, photomultiplier based 4-channel photometer and PSD based panoramic spectrophotopolarimeter with 1 µs time resolution in 1994, 1999, 2003 and 2005-2006 years. The upper limit on the pulsar precession on Dec 2, 1999 is placed in the 10 s-2 hr time range. The evidence of a varying from set to set fine structure of the main pulse is found in the 1999 and 2003 years data. No such fine structure is detected in the integral pulse shape of 1994, 1999 and 2003 years. The drastic change of the pulse shape in the 2005-2006 years set is detected along with the pulse shape variability and quasi-periodic phase shifts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.