Integrating wind power with any other energy source in power system has many operational and scheduling complications because of its inconsistent nature in the process ofwind forecasting. In this paper, a new metaheuristic optimization method named Grey Wolf Optimization algorithm is involved for solving the problem of generation scheduling (GS) to obtain best possible solution in power systems taking into account the load balance, reserve requirement, wind power availability constraints, inequality and equality constraints. The proposed GWO method is applied to a test system involves 40 conventional units and 2 wind farms. The system performance of GWO algorithm is establishedbyevaluating the results obtained for different number of trails and various iterationsfor five different populations. Calculation of the solution for different populations in the systemdiscloses that the best optimal scheduleachieved by Grey Wolf Optimization algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.