Human CD34+ multilineage progenitor cells (CD34HPC) from cord blood and bone marrow express CD40, a member of the tumor necrosis factor–receptor family present on various hematopoietic and nonhematopoietic cells. As hyper-IgM patients with mutated CD40 ligand (CD40L) exhibit neutropenia, no B cell memory, and altered T cell functions leading to severe infections, we investigated the potential role of CD40 on CD34HPC development. CD40activated cord blood CD34HPC were found to proliferate and differentiate independently of granulocyte/macrophage colony-stimulating factor, into a cell population with prominent dendritic cell (DC) attributes including priming of allogeneic naive T cells. DC generated via the CD40 pathway displayed strong major histocompatibility complex class II DR but lacked detectable CD1a and CD40 expression. These features were shared by a dendritic population identified in situ in tonsillar T cell areas. Taken together, the present data demonstrate that CD40 is functional on CD34HPC and its cross-linking by CD40L+ cells results in the generation of DC that may prime immune reactions during antigen-driven responses to pathogenic invasion, thus providing a link between hematopoiesis, innate, and adaptive immunity.
Previous studies have shown that tumor necrosis factors (TNFs) inhibit the proliferative effects of crude or purified colony-stimulating factors (CSFs) on low density human bone marrow cell fractions. In the present study we investigated the effects of TNF alpha on the growth of highly purified CD34+ human hematopoietic progenitor cells (HPC) in response to recombinant CSFs. In short-term liquid cultures (5 to 8 days), TNF alpha strongly potentiates interleukin-3 (IL-3) and granulocyte-macrophage-CSF (GM-CSF)-induced growth of CD34+ HPC, while it has no proliferative effect per se. Within 8 days, the number of viable cells obtained in TNF alpha-supplemented cultures is threefold higher than in cultures carried out with IL-3 or GM-CSF alone. Secondary liquid cultures showed that the potentiating effect of TNF alpha on IL-3-induced proliferation of CD34+ HPC does not result from an IL-3-dependent generation of TNF alpha responsive cells. Limiting dilution analysis indicates that TNF alpha increases both the frequency of IL-3 responding cells and the average size of the IL-3-dependent clones. The potentiating effect of TNF alpha on IL-3- and GM-CSF- dependent growth of CD34+ HPC is also observed in day 7 colony assays. Under these short-term culture conditions, TNF alpha does not appear to accelerate cell maturation as a precursor morphology is retained. Finally, TNF alpha inhibits the relatively weak growth-promoting effect of granulocyte-CSF (G-CSF), which acts on a more committed subpopulation of CD34+ HPC different from that recruited by IL-3 and GM- CSF. TNF beta displays the same modulatory effects as TNF alpha. Thus, TNFs appear to enhance the early stages of myelopoiesis.
We have previously shown that tumor necrosis factor-alpha (TNF alpha) strongly potentiates interleukin-3 (IL-3)-induced short-term proliferation of human CD34+ hematopoietic progenitor cells (HPC). Using longer term cultures of CD34+ HPC, we demonstrate here that this initial potentiation ceases after 10 to 12 days; whereupon TNF alpha displays inhibitory effects. Thus, TNF alpha was found to inhibit cells of granulocytic affiliation while it potentiates the development of maturing cells of the monocytic lineage both in liquid and semi-solid (day 14 colony-forming unit) cultures. TNF alpha was demonstrated to reversibly block granulocytic differentiation at the level of uncommitted CD13-, CD15- blast cells that accumulate in IL-3 + TNF alpha cultures. Furthermore, growth of committed granulocytes (CD15+) from IL-3 cultures was also inhibited by TNF alpha through an arrest of cell cycle in G0/G1. Finally, the use of neutralizing anti-TNF alpha monoclonal antibody and limiting dilution studies indicate that the inhibitory effects of TNF alpha are direct. Taken together, our data demonstrate that, following a phase of potentiation of proliferation of early HPC, TNF alpha displays direct inhibitory effects due to negative interference with both granulocytic differentiation and proliferation of granulocytic cells.
SummaryWe have recently demonstrated that tumor necrosis factor ol (TNF-ot) potentiates interleukin 3 (IL-3)-and granulocyte/macrophage colony-stimulating factor-induced growth of CD34 + hematopoietic progenitor cells (HPC), and favors the generation of dendritic/Langerhans cells. The stimulatory effect of TNF-ot was detailed in the present study. Thus, CD34 + HPC entering in cycle (S/G2M) after a 48-h pulse with IL-3 expressed the transferrin receptor (TfR), and fluorescence-activated cell sorter-separated TfR + HPC, but not TIP,-HPC, showed a high proliferative response to IL-3. In contrast, TfR-HPC were found to undergo strong proliferation in response to IL-3 + TNF-cz. Limiting dilution experiments indicated that TNF-cz increased both the frequency and the average size of clones generated from TfR-HPC as a result of the development of a higher number of large clones. In contrast, TNF-ot did not enhance the IL-3-dependent proliferation of TfR + HPC. Preculturing CD34 + HPC for 48 h with TNF-ot enhanced the subsequent generation of IL-3-dependent colony-forming units. Precultures with TNF-a or cultures with suboptimal doses of TNF-cz allowed the recruitment of cells with both granulocytic and monocytic differentiation potential. Taken together, our results indicate that TNF-ot recruits a subpopulation of CD34 § HPC hyposensitive to IL-3, with high proliferative capacity and some features of multipotential progenitors, that are likely to be more primitive than those responding to IL-3 alone.
In the present study, we investigated the effects of human recombinant interleukin-7 (IL-7) on the proliferation of enriched hematopoietic cells isolated from human adult and fetal bone marrow (BM). In cultures of CD34+ cells, IL-7 was found to induce dose-dependent incorporation of 3H-thymidine (3H-TdR), but had no demonstrable effect on the development of myeloid colony-forming cells. Numbers of B-cell precursors (BCP), initially present within CD34+ populations and which included a CD34+CD20+ subset, were significantly increased when CD34+ BM cells were cultured in the presence of IL-7. This effect was most striking on CD20+ BCP, and resulted at least partly from higher numbers of cycling cells as indicated by Hoechst 33342 fluorescence (Calbiochem, Behring Diagnostics, La Jolla, CA). These results indicate that IL-7 promotes the growth of BCP within the CD34+ compartment. In line with the B-lineage affiliation of CD34+ target cells, committed BCP (CD10+ CD19+ surface IgM-) isolated from BM were also found to proliferate in response to IL-7. Interestingly, this effect of IL-7 was strongly potentiated by the addition of IL-3. Taken together, and in accordance with previous observations on murine cells, our data indicate that IL-7 acts as a growth factor during the ontogeny of human B lymphocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.