Today, the efficiency of turbines is limited by different losses. Minimizing these losses is a main goal to reduce fuel consumption and produce more environmentally friendly machines. Observations on the scales of fast swimming sharks display a riblet structure. These riblets provide a significant reduction of drag losses, but are quite sensitive on pollution. Therefore, for a good performance, it is essential to combine these structures with self-cleaning properties. A lateral- and depth-selective distribution of particles with a negative thermal expansion coefficient (NTE) in a binder with positive thermal expansion coefficient can be used to deform the surfaces depending on the temperature. At high temperatures a riblet structure will be formed by local expansion or shrinkage and at cooling down the surface will be cleaned by the reversal of the deformation. Beside the production of a coating with a lateral- and depth-selective distribution of the NTE-ceramics within the binder the thermodynamical stability of the ceramics inside the binder is part of the investigations to provide a sufficient long-time stability of the coating.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.