In turbulent condensation with noncondensable gas, a thin noncondensable layer accumulates and generates a diffusional resistance to condensation and sensible heat transfer. By expressing the driving potential for mass transfer as a difference in saturation temperatures and using appropriate thermodynamic relationships, here an effective “condensation” thermal conductivity is derived. With this formulation, experimental results for vertical tubes and plates demonstrate that condensation obeys the heat and mass transfer analogy, when condensation and sensible heat transfer are considered simultaneously. The sum of the condensation and sensible heat transfer coefficients becomes infinite at small gas concentrations, and approaches the sensible heat transfer coefficient at large concentrations. The “condensation” thermal conductivity is easily applied to engineering analysis, and the theory further demonstrates that condensation on large vertical surfaces is independent of the surface height.
When a drop breaks free from a liquid film or feeding orifice and falls through an atmosphere of lower temperature it experiences a transient heat and mass transfer process involving acceleration, the development of hydrodynamic, thermal, and concentration boundary layers in the gas, oscillation of the drop shape, and the development of internal circulation within the drop. This problem, which is of importance in evaporative cooling systems, has been studied experimentally for water drops 3–6 mm in diameter falling through air. Study of a simplified set of governing equations indicates that similitude does not exist in this problem. However, it has been found that for this size range an approximate procedure based on the assumption of negligible internal thermal resistance and an empirical transient correction factor applied to the Ranz-Marshall [1] correlation could describe the data very well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.