Potassium channels comprise groups of diverse proteins which can be distinguished according to each member's biophysical properties. Some types of K+ channels are blocked with high affinity by specific peptidyl toxins. Three toxins, charybdotoxin, iberiotoxin, and noxiustoxin, which display a high degree of homology in their primary amino acid sequences, have been purified to homogeneity from scorpion venom. While charybdotoxin and noxiustoxin are known to inhibit more than one class of channel (i.e., several Ca(2+)-activated and voltage-dependent K+ channels), iberiotoxin appears to be a selective blocker of the high-conductance, Ca(2+)-activated K+ channel that is present in muscle and neuroendocrine tissue. A distinct class of small-conductance Ca(2+)-activated K+ channel is blocked by two other toxins, apamin and leiurotoxin-1, that share no sequence homology with each other. A family of homologous toxins, the dendrotoxins, have been purified from venom of various related species of snakes. These toxins inhibit several inactivating voltage-dependent K+ channels. Although molecular biology approaches have been employed to identify and characterize several species of voltage-gated K+ channels, toxins directed against a particular channel can still be useful in defining the physiological role of that channel in a particular tissue. In addition, for those K+ channels which are not yet successfully probed by molecular biology techniques, toxins can be used as biochemical tools with which to purify the target protein of interest.
[2-14C]Urate uptake was studied in brush border and basolateral membrane vesicles of rat renal cortex. In the absence of copper, urate equilibrated without metabolism of transported urate. Exposure of the vesicles to copper significantly stimulated uptake, and in these vesicles uptake was also stimulated by NaCl or KCl gradients. Allantoin accumulated in these vesicles due to oxidation of transported urate. This oxidation is ascribed to a copper-stimulated, membrane-associated uricase since purified uricase and the membranes had similar Km values, both were inhibited by oxonic acid, and extramembranal uricase was not detected. Oxonic acid and pyrazinoic acid inhibited both uptake and enzyme activity. These findings suggest that urate uptake is carrier mediated and that uricase may play some role in transport. In addition, it appears that a significant loss of copper occurs during isolation of membrane vesicles that profoundly affects the characteristics of urate uptake. Those properties of the membrane that influence urate uptake, however, can be restored by exposure of the membranes to copper.
Bepridil, an antiarrhythmic agent, inhibits Na-Ca exchange in cardiac sarcolemmal membrane vesicles (Ki = 30 microM) by a novel mechanism, different from that determined for amiloride analogues [Slaughter, R. S., Garcia, M. L., Cragoe, E. J., Jr., Reeves, J. P., & Karczorowski, G. J. (1988) Biochemistry (preceding paper in this issue)]. Bepridil causes partial inhibition of Nai-dependent Ca2+ uptake but complete block of Nao-dependent Ca2+ efflux. Inhibition of Na-Ca exchange is noncompetitive vs Ca2+ but competitive vs Na+ in both K+ and sucrose. Bepridil also blocks Ca-Ca exchange, with or without K+ present. However, K+ has two effects on inhibition: it reduces the potency of bepridil and causes inhibition to become partial. Inhibition of Ca-Ca exchange displays noncompetitive kinetics vs Ca2+ in either sucrose or K+. Dixon analyses of Na-Ca exchange inhibition caused by mixtures of bepridil and amiloride analogues demonstrate that these compounds produce a competitive interaction at a common carrier site that is evident only at low concentrations of amiloride inhibitors. Hill plots of bepridil inhibition of Na-Ca and Ca-Ca exchange display unitary Hill coefficients. These results indicate that bepridil interacts at only one substrate-binding site, the site selective for Na+, where amiloride analogues also preferentially interact. However, unlike amiloride, bepridil does not interact at the common Na+, Ca2+-binding site of the carrier.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.