The spatial distribution of shear bands was investigated in 304L stainless steel through the radial collapse of a thick-walled cylinder under high-strain-rate deformation (∼10 4 s −1 ). The shear-band initiation and propagation were also examined. Self-organization of multiple adiabatic shear bands was observed. The effect of grain size on spacing of shear bands was investigated at four different grain sizes: 30 m, 50 m, 140 m and 280 m. A single crystal with a similar composition was also tested. The experimental results show only a modest variation of shear-band spacing within the investigated grain size range. Three principal mechanisms are considered to be active in initiation: (a) momentum diffusion by stress unloading, (b) perturbation in the stress/strain/temperature fields, (c) microstructural inhomogeneities. The observed shear-band spacing is compared with existing theories; Grady-Kipp and Wright-Ockendon-Molinari theories. These are one-dimensional theories that do not consider the evolution in spacing as the shear bands grow. A discontinuous growth mode for shear localization under periodic perturbation is applied and predicts spacings in good agreement with observations. Self-organized initiation and propagation modes are discussed in relation to the interaction among the nucleus and well-developed shear bands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.