Reduced or no tillage living mulch systems for corn (Zea mays L.) production after alfalfa (Medicago sativa L.) have the potential to reduce soil erosion and water pollution. Available soil water may be the most limiting factor in use of living mulch systems in the north central states. Our objective was to compare growth and yield of corn seeded no‐till into chemically suppressed and unsuppressed alfalfa sods to corn seeded using a conventional till system (alfalfa moldboard plowed) with and without irrigation. Alfalfa suppression treatments were: (i) no suppression; (ii) partial suppression achieved by chemically killing alfalfa in 15‐in. bands over the corn row using atrazine; (iii) partial suppression achieved by a broadcast application of atrazine; (iv) total suppression achieved by a broadcast application of glyphosate followed by atrazine; and (v) total suppression achieved by moldboard plowing 5 d before seeding corn (conventional system). Treatments were applied to alfalfa following a late‐May harvest. Corn was planted in early June. With irrigation, corn grain yields were similar for the partial and total suppression treatments both years. With no irrigation, however, corn grain yields in the partial suppression‐band treatment were reduced 46% in 1985 and 55% in 1987, compared with the total suppression‐tillage treatment. Corn grain yields in the partial suppression‐broadcast treatment were similar to those of the total suppression‐tillage treatment in 1985, but were reduced 38% under low rainfall in 1987. When alfalfa was not suppressed, corn grain yields were reduced 63% or more under irrigated conditions and 96% or more under nonirrigated conditions. Producing corn in a partially suppressed alfalfa living mulch system following removal of a spring alfalfa crop may be feasible in growing seasons that begin with fully charged soil water profiles or in areas where irrigation is possible; however, the practice is too risky for routine use in much of the uppwer Midwest.
The imperial bromeliad Alcantarea imperialis grows naturally on rocky outcrops ('inselbergs') in regions where daily temperatures vary from 5 to 40°C. As carbohydrate metabolism is altered in response to cold, it could lead to reprogramming of the metabolic machinery including the increase in levels of metabolites that function as osmolytes, compatible solutes, or energy sources in order to maintain plant homeostasis. The aim of this study was to evaluate the effects of different temperatures on plant growth and non-structural carbohydrates in plants of A. imperialis adapted to low temperature. Seedlings of A. imperialis were grown in vitro under a 12-h photoperiod with four different day/night temperature cycles: 5/5°C, 15/15°C, 15/30°C (dark/light) and 30/30°C. Plants were also cultivated at 26°C in ex vitro conditions for comparison. The results showed an inverse relationship between temperature and germination time and no differences in the percentage of germination. Plants maintained for 9 months at 15°C presented a reduced number of leaves and roots, and a dry mass four times lower than plants grown at 30°C. Sugar content was higher in plants grown at 15°C than at 30°C. However, the highest amount of total sugar was found in plants growing under warm day/cold night conditions. Myo-inositol, glucose, fructose and sucrose were found predominantly under high temperatures, while under low temperatures, sucrose was apparently replaced by trehalose, raffinose and stachyose. Starch content was highest in plants grown under high temperatures. The lowest starch content was detected under low temperatures, suggesting its conversion into soluble carbohydrates to protect the plants against cold. These results indicated that low temperature retarded growth of A. imperialis and increased sugar levels, mainly trehalose, thus suggesting that these sugar compounds could be involved in cold tolerance.
Carbon allocation in biomass is an important response of plants to the increasing atmospheric [CO2]. The effects of elevated [CO2] are scarcely reported in fructan-accumulating plants and even less in tropical wild species storing this type of carbohydrate. In the present study, the effects of high [CO2] atmosphere was evaluated on growth, biomass allocation and fructan metabolism in Vernonia herbacea (Vell.) Rusby, an Asteraceae from the Brazilian cerrado, which accumulates inulin-type fructans in the underground organs (rhizophores). Plants were cultivated for 120 days in open-top chambers (OTCs) under ambient (~380 μmol mol–1), and elevated (~760 μmol mol–1) [CO2]. Plant growth, photosynthesis, fructan contents, and the activities of fructan metabolising enzymes were analysed in the rhizophores at Time 0 and 15, 30, 60, 90 and 120 days. Plants under elevated [CO2] presented increases in height (40%), photosynthesis (63%) and biomass of aerial (32%) and underground (47%) organs when compared with control plants. Under elevated [CO2] plants also presented higher 1-SST, 1-FFT and invertase activities and lower 1-FEH activity. Although fructan concentration remained unchanged, fructan productivity was higher in plants maintained under elevated [CO2], due to their higher rhizophore biomass. This is the first report on the effects of elevated [CO2] on a plant species bearing underground organs that accumulate fructans. Our results indicate that plants of V. herbacea can benefit from elevated atmospheric [CO2] by increasing growth and carbon allocation for the production of inulin, and may contribute to predict a future scenario for the impact of this atmospheric condition on the herbaceous vegetation of the cerrado.
Elevated [CO2 ] is suggested to mitigate the negative effects of water stress in plants; however responses vary among species. Fructans are recognised as protective compounds against drought and other stresses, as well as having a role as reserve carbohydrates. We analysed the combined effects of elevated [CO2 ] and water deficit on fructan metabolism in the Cerrado species Viguiera discolor Baker. Plants were cultivated for 18 days in open-top chambers (OTC) under ambient (∼380 ppm), and high (∼760 ppm) [CO2 ]. In each OTC, plants were submitted to three treatments: (i) daily watering (control), (ii) withholding water (WS) for 18 days and (iii) re-watering (RW) on day 11. Analyses were performed at time 0 and days 5, 8, 11, 15 and 18. High [CO2 ] increased photosynthesis in control plants and increased water use efficiency in WS plants. The decline in soil water content was more distinct in WS 760 (WS under 760 ppm), although the leaf and tuberous root water status was similar to WS 380 plants (WS under 380 ppm). Regarding fructan active enzymes, 1-SST activity decreased in WS plants in both CO2 concentrations, a result consistent with the decline in photosynthesis and, consequently, in substrate availability. Under WS and both [CO2 ] treatments, 1-FFT and 1-FEH seemed to act in combination to generate osmotically active compounds and thus overcome water deficit. The proportion of hexoses to sucrose, 1-kestose and nystose (SKN) was higher in WS plants. In WS 760, this increase was higher than in WS 380, and was not accompanied by decreases in SKN at the beginning of the treatment, as observed in WS 380 plants. These results suggest that the higher [CO2 ] in the atmosphere contributed to maintain, for a longer period, the pool of hexoses and of low DP fructans, favouring the maintenance of the water status and plant survival under drought.
The results show that fructan metabolism correlates well with endogenous hormone concentrations and environmental changes, suggesting that the co-ordinated action of carbohydrate metabolism and hormone synthesis enables C. obovata to survive unfavourable field conditions. Endogenous hormone concentrations seem to be related to regulation of fructan metabolism and to the transition between phenophases, signalling for energy storage, reserve mobilization and accumulation of oligosaccharides as osmolytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.