The problem of viscous incompressible flow in a periodic cell with a porous body is solved. The Stokes flow model is adopted to describe the flow outside the body and the Brinkman equation is applied to find the filtration velocity field inside the porous domain. The conditions on the boundary between the free fluid and the porous medium for the porous body of arbitrary shape are obtained. The boundary value problem for the joint solution of the biharmonic and Brinkman equations for the stream functions outside and inside the porous body are then solved using a boundary element method. Good agreement of the numerical and analytical models for the Kuwabara circular cell model is shown for the fluid flow through a porous circular cylinder. The fluid flow past a circular, square, triangular cylinders and a circular body of uneven surface (an idealized model of a viral capsid) in a rectangular periodic cell are calculated. Comparison of the results obtained with the numerical solution from a CFD ANSYS/FLUENT model shows good accuracy of the developed mathematical model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.