Copyright 2008 Elsevier B.V., All rights reserved.The Fifth Generation Mesoscale Model (MM5) is used to study the effect of assimilated satellite and conventional data on the prediction of three monsoon depressions over India using analysis nudging. The satellite data comprised the vertical profiles of temperature and humidity (NOAA-TOVS: - National Oceanic and Atmospheric Administration-TIROS Operational Vertical Sounder; MODIS: - MODerate resolution Imaging Spectroradiometer) and the surface wind vector over the sea (QuikSCAT: - Quick Scatterometer); the conventional meteorological data included the upper-air and surface data from the India Meteorological Department (IMD). Two sets of numerical experiments are performed for each case: the first set, NOFDDA (no nudging), utilizes NCEP reanalysis (for the initial conditions and lateral boundary conditions) in the simulation, the second set, FDDA, employs the satellite and conventional meteorological data for an improved analysis through analysis nudging. Two additional experiments are performed to study the effect of increased vertical and horizontal resolution as well as convective parameterization for one of the depressions for which special fields observations were available. The results from the simulation are compared with each other and with the analysis and observations. The results show that the predicted sea level pressure (SLP), the lower tropospheric cyclonic circulation, and the precipitation of the FDDA simulation reproduced the large-scale structure of the depression as manifested in the NCEP reanalysis. The simulation of SLP using no assimilation high-resolution runs (HRSKF10KM, HRSKF3.3KM) with the Kain-Fritsch cumulus parameterization scheme appeared poor in comparison with the FDDA run, while the no assimilation high-resolution runs (HRSGR10KM, HRSGR3.3KM) with the Grell cumulus scheme provided better results. However, the space correlation and the root mean square (rms) error of SLP for the HRSKF10KM was better than the FDDA; the largest and smallest space correlation for HRSKF10KM, FDDA, and HRSGR10KM were 0.894 and 0.623, 0.663 and 0.195, and 0.733 and 0.338 respectively; the smallest and largest rms error for HRSKF10KM, FDDA and HRSGR10KM were 1.879 and 5.245, 2.308 and 4.242, and 2.055 and 4.909 respectively. The precipitation simulations with the 3.3 km high-resolution, no assimilation runs performed no better than the precipitation simulation with the FDDA run. Thus, a significant finding of this study is that over the Indian monsoon region, the improvements in the simulation using nudging in the FDDA run are of similar magnitude (or better) than the improvements in the simulation due to high-resolution and to cumulus parameterization sensitivity. The improvements in the FDDA run due to analysis nudging were also verified in two more depression cases. The current operational regional models in India do not incorporate the data assimilation of NOAA-TOVS/MODIS and QuikSCAT satellite data, and hence the results of this study are relevant to ...
Copyright 2008 Elsevier B.V., All rights reserved.The Penn State/NCAR mesoscale model (MM5) has been used in this study to ingest and assimilate the INSAT-CMV (Indian National Satellite System-Cloud Motion Vector) wind observations using analysis nudging (four-dimensional data assimilation, FDDA) to improve the prediction of a monsoon depression which occurred over the Bay of Bengal, India during 28 July 2005 to 31 July 2005. To determine the impact of assimilation of INSAT-CMV winds on the prediction of a monsoon depression, three sets of numerical experiments (NOFDDA, FDDA and FDDA CMV) were designed. While the FDDA CMV run assimilated satellite derived winds only, the FDDA run assimilated both satellite and conventional observations. The NOFDDA run used neither satellite nor conventional observations. The results of the study indicate that the simulated sea level pressure field from the FDDA run is more consistent with the sea level pressure field from NCEP-FNL compared to the FDDA CMV and NOFDDA runs. The highest correlation and lowest rms error of the sea level pressure field are associated with the FDDA run, and this provides a quantitative verification of the improvement due to the assimilation of satellite derived winds and the conventional upper air observations for the prediction of monsoon depression. All the three model simulated winds are in good agreement with the analysis winds at 850 hPa, 500 hPa and 200 hPa levels. The simulated structure of the spatial precipitation pattern for the assimilation experiments (FDDA and FDDA CMV) are closer to the TRMM observations with more rainfall simulated over the east coast regions in the assimilation experiments. The rms errors of the wind speed for the FDDA run show lower values at 500 hPa for all the three model runs, with a reduction in all three levels of up to 0.8-1.4 m s for the FDDA run and 0.5-1.9 m s for the FDDA CMV run with respect to the NOFDDA run. The statistical significance of the sea level pressure and the precipitation differences between the FDDA and the NOFDDA as well as the differences between the FDDA CMV and the NOFDDA have been calculated using the two-tailed Student's t-test and were found to be statistically significant. The influence of varying the nudging coefficients in the FDDA experiment has been studied
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.