To substantiate changes in stress-strain state of rock mass in the process of long-pillar mining with the help of double-unit longwalls while evaluating stress of a mine field in terms of Lvivvuhillia SE mine. Methods. Analysis of the plans of mine workings has become a basis for the evaluation of physical and geometrical parameters of a support pressure area of the double-unit stopes depending upon mining and geological as well as engineering conditions for n 7 b coal seam extraction. 3D model of the rock mass has been rendered using SolidWorks 2019 software. The geomechanical model of the rock mass is based upon the specified output data concerning actual operating schedule of 1018 and 1019 double-unit longwalls (numbers of the longwalls are changed as it has been required by the authorities of Lvivvuhillia SE) in terms of n 7 b seam and support patterns of the development mine workings in Lvivvuhillia SE mine. Each component of the support was modeled as a separate part with the relevant geotech data. Behaviour of the expansion of the rock mass stress-strain state within the selected point has been analyzed by means of sections at the specified plane. Findings. Rendering algorithm of 3D model of rock mass in terms of long-pillar mining of a coal seam using double-unit longwalls has been developed. A geomechanical model of the rock mass has been substantiated depending upon the mining and geological mode of occurrence and engineering parameters of coal mining process. Originality. Nature of the support pressure area formation in front of a stope as well as along the extraction pillar length has been analyzed. It has been identified that if stopes are within one and the same plane, interconnection of their frontal support pressure areas as well as walls of the development workings take place. In this context, adjoining entry acts as the extra destressing technogenic cavity in addition to its proper functions. Practical implications. Output data to make recommendations concerning the efficient mining parameters and methods for rock pressure control have been identified relying upon the analysis of stress-strain state of rock mass in the process of the operation of double-unit longwalls. Visualization of the principles of formation of the stress-strain state of support pressure area and evaluation of the rock mass condition have shown that the maximum reduced stresses reach 70 MPa in terms of 18 m width of the support pressure area.
Purpose. Underground coal gasification, as a complex and technically difficult process, should be supported in many aspects by computer simulations or analytical calculations of rock mass behavior. However, little is known about the formation of stratification cavities in the roof rocks during coal seam gasification. To research the formation of stratification cavities and rocks deformations by mine pressure with the methods of calculation based on hypotheses or statistical information, a number of hypotheses are used. The main purpose is to examine the rock mass behavior and formation of stratification cavities during gasification of a thick coal seam.Methods. Analytical calculations were used as the research method for the work presented. The mathematical model of the stress-strain state of rock mass based on the theory of elasticity, resiliency, and maximum equilibrium, was developed and used in this paper.Findings. Critical analysis of geomechanical models of coal gasification together with their mathematical formulation was the result of considerations presented in this paper. Equations were derived for substantiating parameters of stratification cavities above the goaf of the underground gasifier. Subsequently, the volumes of stratification cavities depending on the length of gasification channel were calculated. The results have significant influence on gasifiers development and the final efficiency of gasification process.Originality. The research results were obtained from analytical calculations of rock mass behavior during thick coal seams gasification. The authors implemented a mathematical model based on the method suggested by professor A. Savostianov which was used in carrying out the calculations. Practical implications.The present study provides a starting point for further research and analytical calculations of rock mass behavior. The data and conclusions outlined in this paper may be useful in preliminary optimization and analysis of coal seams gasification. They can also be a point of reference for more advanced geomechanical simulations.
Purpose is to study influence of a longwall face advance on the geomechanical situation in the neighbourhood of a mining site based upon determination of changes in standard and critical subsidence of the immediate roof rocks. Methods. To study a geomechanical situation in the neighbourhood of a mining site the authors have applied software product GeoDenamics Lite developed at Dnipro University of Technology. The software product relies upon a calculation procedure of stress-strain state of rocks by Professor O.V. Savostianov. Expediency of the software selection is based upon the supported control and adaptation of a coal mining technique to changes in geodynamic stress fields in the anisotropic rock-coal medium impacting temporal and spatial changes in the technological parameters. Findings. The basic problems have been singled out connected with certain changes in a longwall face advance. For the first time, an analytical scheme of tangential stresses within the immediate roof rocks has been developed for Lisova mine of SE Lvivvuhillia under the conditions of coal seam mining by means of the paired longwalls which makes it possible to determine both physical and geometrical parameters of standard loads within the formation. Originality. Dependencies of temporal and spatial changes in subsidences and horizontal displacements of rock layers of the immediate roof have been defined being 5.2 m for the upper rock pack and 3.9 m for the lower pack if the longwall longwall face advance is 1.9 up to 4.8 m/day. Both physical and geometrical parameters of the reference pressure have been defined as well as the parameters of lower sandstone pack in the process of the main roof subsidence. Impact of the extra pressure forces on the immediate roof rocks has been analyzed at the moment of critical lowerings of the immediate roof rocks. In this context, standard loading from the overlying formation in addition to tangential stresses in the roof result in rock failure due to vertical cracks above a longwall face. Practical implications. The engineering methods have been developed making it possible to identify impact parameters of a longwall face advance on the geomechanical situation in the neighbourhood of a mining site. In future, it will help forecast changes in the reference pressure around a longwall face while preventing emergency settlement of the powered support.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.