Heating the outer layers of the magnetically quiet solar atmosphere to more than one million kelvin and accelerating the solar wind requires an energy flux of approximately 100 to 300 watts per square metre, but how this energy is transferred and dissipated there is a puzzle and several alternative solutions have been proposed. Braiding and twisting of magnetic field structures, which is caused by the convective flows at the solar surface, was suggested as an efficient mechanism for atmospheric heating. Convectively driven vortex flows that harbour magnetic fields are observed to be abundant in the photosphere (the visible surface of the Sun). Recently, corresponding swirling motions have been discovered in the chromosphere, the atmospheric layer sandwiched between the photosphere and the corona. Here we report the imprints of these chromospheric swirls in the transition region and low corona, and identify them as observational signatures of rapidly rotating magnetic structures. These ubiquitous structures, which resemble super-tornadoes under solar conditions, reach from the convection zone into the upper solar atmosphere and provide an alternative mechanism for channelling energy from the lower into the upper solar atmosphere.
The chromosphere is a thin layer of the solar atmosphere that bridges the relatively cool photosphere and the intensely heated transition region and corona. Compressible and incompressible waves propagating through the chromosphere can supply significant amounts of energy to the interface region and corona. In recent years an abundance of high-resolution observations from state-of-the-art facilities have provided new and exciting ways of disentangling the characteristics of oscillatory phenomena propagating through the dynamic chromosphere. Coupled with rapid advancements in magnetohydrodynamic wave theory, we are now in an ideal position to thoroughly investigate the role waves play in supplying energy to sustain chromospheric and coronal heating. Here, we review the recent progress made in characterising, categorising and interpreting oscillations manifesting in the solar chromosphere, with an impetus placed on their intrinsic energetics.
We present observational evidence of compressible magnetohydrodynamic wave modes propagating from the solar photosphere through to the base of the transition region in a solar magnetic pore. High cadence images were obtained simultaneously across four wavelength bands using the Dunn Solar Telescope. Employing Fourier and wavelet techniques, sausage-mode oscillations displaying significant power were detected in both intensity and area fluctuations. The intensity and area fluctuations exhibit a range of periods from 181 − 412 s, with an average period ∼290 s, consistent with the global p-mode spectrum. Intensity and area oscillations present in adjacent bandpasses were found to be out-of-phase with one another, displaying phase angles of 6.12 • , 5.82 • and 15.97 • between 4170Å continuum -G-band, G-band -Na I D 1 and Na I D 1 -Ca II K heights, respectively, reiterating the presence of upwardly-propagating sausage-mode waves. A phase relationship of ∼0 • between same-bandpass emission and area perturbations of the pore best categorises the waves as belonging to the 'slow' regime of a dispersion diagram. Theoretical calculations reveal that the waves are surface modes, with initial photospheric energies in excess of 35 000 W m −2 . The wave energetics indicate a substantial decrease in energy with atmospheric height, confirming that magnetic pores are able to transport waves that exhibit appreciable energy damping, which may release considerable energy into the local chromospheric plasma.
The Sun's outer coronal layer exists at a temperature of millions of kelvins, much hotter than the solar surface we observe. How this high temperature is maintained and what energy sources are involved continue to puzzle and fascinate solar researchers. Recently, the Hinode spacecraft was launched to observe and measure the plasma properties of the Sun's outer layers. The data collected by Hinode reveal much about the role of magnetic field interactions and how plasma waves might transport energy to the corona. These results open a new era in high-resolution observation of the Sun.
In this paper, we present and discuss results of two-dimensional simulations of linear and nonlinear magnetoacoustic wave propagation through an open magnetic flux tube embedded in the solar atmosphere expanding from the photosphere through to the transition region and into the low corona. Our aim is to model and analyze the response of such a magnetic structure to vertical and horizontal periodic motions originating in the photosphere. To carry out the simulations, we employed our MHD code SAC (Sheffield Advanced Code). A combination of the VALIIIC and McWhirter solar atmospheres and coronal density profiles were used as the background equilibrium model in the simulations. Vertical and horizontal harmonic sources, located at the footpoint region of the open magnetic flux tube, are incorporated in the calculations, to excite oscillations in the domain of interest. To perform the analysis we have constructed a series of time-distance diagrams of the vertical and perpendicular components of the velocity with respect to the magnetic field lines at each height of the computational domain. These time-distance diagrams are subject to spatio-temporal Fourier transforms allowing us to build ω-k dispersion diagrams for all of the simulated regions in the solar atmosphere. This approach makes it possible to compute the phase speeds of waves propagating throughout the various regions of the solar atmosphere model. We demonstrate the transformation of linear slow and fast magneto-acoustic wave modes into nonlinear ones, i.e., shock waves, and also show that magneto-acoustic waves with a range of frequencies efficiently leak through the transition region into the solar corona. It is found that the waves interact with the transition region and excite horizontally propagating surface waves along the transition region for both types of drivers. Finally, we estimate the phase speed of the oscillations in the solar corona and compare it with the phase speed derived from observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.