Sofic groups generalise both residually finite and amenable groups, and the concept is central to many important results and conjectures in measured group theory. We introduce a topological notion of a sofic boundary attached to a given sofic approximation of a finitely generated group and use it to prove that coarse properties of the approximation (property A, asymptotic coarse embeddability into Hilbert space, geometric property (T)) imply corresponding analytic properties of the group (amenability, a-T-menability and property (T)), thus generalising ideas and results present in the literature for residually finite groups and their box spaces. Moreover, we generalise coarse rigidity results for box spaces due to Kajal Das, proving that coarsely equivalent sofic approximations of two groups give rise to a uniform measure equivalence between those groups. Along the way, we bring to light a coarse geometric viewpoint on ultralimits of a sequence of finite graphs first exposed by Ján Špakula and Rufus Willett, as well as proving some bridging results concerning measure structures on topological groupoid Morita equivalences that will be of interest to groupoid specialists.
Given a quadratic module, we construct its universal C * -algebra, and then use methods and notions from the theory of C * -algebras to study the quadratic module. We define residually finite-dimensional quadratic modules, and characterize them in various ways, in particular via a Positivstellensatz. We give unified proofs for several existing strong Positivstellensätze, and prove some new ones. Our approach also leads naturally to interesting new examples in free convexity. We show that the usual notion of a free convex hull is not able to detect residual finite-dimensionality. We thus propose a new notion of free convexity, which is coordinate-free. We characterize semialgebraicity of free convex hulls of semialgebraic sets, and show that they are not always semialgebraic, even at scalar level. This also shows that the membership problem for quadratic modules has a negative answer in the non-commutative setup.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.