[1] This paper analyzes the effect of ionospheric refraction on the scattering of high frequency (HF) signals by random field-aligned irregularities in the upper ionosphere. Ray optics calculations are made using the perturbation method for a plane-stratified (on average) ionosphere, i.e., the incident and scattered waves are both supposed to propagate along the undisturbed trajectories with neglect of the geomagnetic field effect. The equation for the so-called cone of aspect-sensitive scattering is derived to relate the trajectory characteristics of the incident and aspect-sensitive scattered signals. The Born approximation is applied to calculate the scattering cross-section for the anisotropic power law model spectrum of random irregularities of the upper ionosphere. The possibility of excitation of the ionospheric interlayer waveguide by the aspect-sensitive scattered HF signals is analyzed in detail for the specific conditions of the HF heating experiment at European Incoherent Scatter (EICSAT).
Abstract. It is shown that the scattering of electromagnetic waves by refractive index inhomogeneities in a continuous random medium is accompanied by a certain polarimetric phenomenon that is analogous to the Brewster effect of classic electrodynamics. In this paper, an observational method and results are discussed for the case of bistatic HF radar sounding of small-scale ionospheric inhomogeneities at frequencies above MUF. The height of the scattering layer, its thickness, and characteristic plasma drift velocity in the ionosphere are estimated as a result of statistical processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.