Nemertea is a phylum of marine worms whose members bear various toxins, including tetrodotoxin (TTX) and its analogues. Despite the more than 30 years of studying TTXs in nemerteans, many questions regarding their functions and the mechanisms ensuring their accumulation and usage remain unclear. In the nemertean Kulikovia alborostrata, we studied TTX and 5,6,11-trideoxyTTX concentrations in body extracts and in released mucus, as well as various aspects of the TTX-positive-cell excretion system and voltage-gated sodium (Nav1) channel subtype 1 mutations contributing to the toxins’ accumulation. For TTX detection, an immunohistological study with an anti-TTX antibody and HPLC-MS/MS were conducted. For Nav1 mutation searching, PCR amplification with specific primers, followed by Sanger sequencing, was used. The investigation revealed that, in response to an external stimulus, subepidermal TTX-positive cells released secretions actively to the body surface. The post-release toxin recovery in these cells was low for TTX and high for 5,6,11-trideoxyTTX in captivity. According to the data obtained, there is low probability of the targeted usage of TTX as a repellent, and targeted 5,6,11-trideoxyTTX secretion by TTX-bearing nemerteans was suggested as a possibility. The Sanger sequencing revealed identical sequences of the P-loop regions of Nav1 domains I–IV in all 17 studied individuals. Mutations comprising amino acid substitutions, probably contributing to nemertean channel resistance to TTX, were shown.
Nemertea is a phylum of nonsegmented worms (supraphylum: Spiralia), also known as ribbon worms. The members of this phylum contain various toxins, including peptide toxins. Here, we provide a transcriptomic analysis of peptide toxins in 14 nemertean species, including Cephalothrix cf. simula, which was sequenced in the current study. The summarized data show that the number of toxin transcripts in the studied nemerteans varied from 12 to 82. The most represented groups of toxins were enzymes and ion channel inhibitors, which, in total, reached a proportion of 72% in some species, and the least represented were pore-forming toxins and neurotoxins, the total proportion of which did not exceed 18%. The study revealed that nemerteans possess a much greater variety of toxins than previously thought and showed that these animals are a promising object for the investigation of venom diversity and evolution, and in the search for new peptide toxins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.