The electrically non-conductive materials like glass, ceramics, quartz, etc. are of great interest for many applications in modern industries. Machining them with high quality and at a faster rate is a challenging task. In this study, a novel technique called grinding aided electrochemical discharge drilling (G-ECDD) is demonstrated which uses a hollow diamond core drill as the tool for performing electrochemical discharge machining of borosilicate glass. The new hybrid technique enhances the material removal rate and machining accuracy to several folds by combining the thermal melting action of discharges and grinding action of the abrasive tool. This paper presents the experimental investigation on the material removal rate during G-ECDD of glass while using different electrolytes. An attempt has been made to explore the influence of electrolyte temperature on G-ECDD performance by maintaining the electrolyte at different temperatures. Experiments were conducted using three different electrolytes which include NaOH, KOH, and the mixture of both. The results obtained from this study revealed that an increase in temperature will favor chemical etching as well as electrochemical reaction rate. Also, it was observed that heating the electrolyte leads to an increase in the bubble density and enhances the ion mobility. This causes the formation of gas film at a faster rate and thereby improving the discharge activity. Thus, machining will be done at a faster rate. Better results are obtained while using a mixture of NaOH and KOH. From the microscopic images of the machined surface, it was observed that material removal mechanism in G-ECDD is a combination of grinding action, electrochemical discharges, and chemical etching. Response surface methodology was adopted for studying the influence of process parameters on the performance of G-ECDD. The new technique of grinding aided electrochemical discharge drilling proved its potential to machine borosilicate glass and simultaneously offers good material removal rate, repeatability, and accuracy.
Machining of advanced glass ceramics is of great importance and is a challenging task for the modern industries. In this study, a new hybrid technique of grinding-aided electrochemical discharge drilling (G-ECDD) is attempted which combines the grinding action of a rotating abrasive tool and thermal melting action of electrochemical discharges to perform drilling of borosilicate glass. G-ECDD is performed using a normal electrochemical discharge machine setup with a provision for using a rotating diamond-coated drill tool. The tool used is a hollow diamond core drill rather than the traditional solid abrasive tool. A spring-fed tool system was designed and developed to provide the tool-feed movement which will also help to maintain a balance between grinding action of diamond grits and thermal melting action of discharges. Preliminary experiments are conducted to identify the optimum spring force of the spring-fed system and tool rotational speed which can facilitate a balanced ECDM and grinding action for material removal. The effect of machining parameters like voltage, duty ratio, pulse cycle time and electrolyte concentration on material removal rate (MRR) and hole radial overcut (ROC) is investigated using response surface methodology (RSM). Duty ratio and voltage are found to be the most significant factors contributing MRR. Voltage and pulse cycle time are identified as the main factors controlling radial overcut of the drilled holes. Second-order regression models for MRR and ROC are developed using the data collected from the experiments using RSM. Grey relational analysis was used to optimize this multi-objective problem. A voltage of 90 V, duty ratio of 0.7, cycle time of 0.002 s and an electrolyte concentration of 3.5 M are found to be the best combination for optimizing the responses. Deterioration of bonding material and dislodging of diamond grits are found to be the major modes of tool wear during G-ECDD. The use of high-frequency pulsed DC increased the tool wear rate due to the less time available for heat dissipation between discharge cycles. Moreover, the wear at the end face of the tool will be accelerated due to the concentration of current density at edges during high-frequency operation. From the microscopic images of the machined surface, the material removal mechanisms involved in G-ECDD are found to be a combination of thermal melting by discharges, grinding action of diamond grits and high-temperature chemical etching effect of the electrolyte.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.