Perennially frozen soil in high latitude ecosystems (permafrost) currently stores 1330-1580 Pg of carbon (C). As these ecosystems warm, the thaw and decomposition of permafrost is expected to release large amounts of C to the atmosphere. Fortunately, losses from the permafrost C pool will be partially offset by increased plant productivity. The degree to which plants are able to sequester C, however, will be determined by changing nitrogen (N) availability in these thawing soil profiles. N availability currently limits plant productivity in tundra ecosystems but plant access to N is expected improve as decomposition increases in speed and extends to deeper soil horizons. To evaluate the relationship between permafrost thaw and N availability, we monitored N cycling during 5 years of experimentally induced permafrost thaw at the Carbon in Permafrost Experimental Heating Research (CiPEHR) project. Inorganic N availability increased significantly in response to deeper thaw and greater soil moisture induced by Soil warming. This treatment also prompted a 23% increase in aboveground biomass and a 49% increase in foliar N pools. The sedge Eriophorum vaginatum responded most strongly to warming: this species explained 91% of the change in aboveground biomass during the 5 year period. Air warming had little impact when applied alone, but when applied in combination with Soil warming, growing season soil inorganic N availability was significantly reduced. These results demonstrate that there is a strong positive relationship between the depth of permafrost thaw and N availability in tundra ecosystems but that this relationship can be diminished by interactions between increased thaw, warmer air temperatures, and higher levels of soil moisture. Within 5 years of permafrost thaw, plants actively incorporate newly available N into biomass but C storage in live vascular plant biomass is unlikely to be greater than losses from deep soil C pools.
As permafrost degrades, the amount of organic soil carbon (C) that thaws during the growing season will increase, but decomposition may be limited by saturated soil conditions common in high-latitude ecosystems. However, in some areas, soil drying is expected to accompany permafrost thaw as a result of increased water drainage, which may enhance C release to the atmosphere. We examined the effects of ecosystem warming, permafrost thaw, and soil moisture changes on C balance in an upland tundra ecosystem. This study was conducted at a water table drawdown experiment, established in 2011 and located within the Carbon in Permafrost Experimental Heating Research project, an ecosystem warming and permafrost thawing experiment in Alaska. Warming and drying increased cumulative growing season ecosystem respiration by~20% over 3 years of this experiment. Warming caused an almost twofold increase in decomposition of a common substrate in surface soil (0-10 cm) across all years, and drying caused a twofold increase in decomposition (0-20 cm) relative to control after 3 years of drying. Decomposition of older C increased in the dried and in the combined warmed + dried plots based on soil pore space 14 CO 2 . Although upland tundra systems have been considered CH 4 sinks, warming and ground thaw significantly increased CH 4 emission rates. Water table depth was positively correlated with monthly respiration and negatively correlated with CH 4 emission rates. These results demonstrate that warming and drying may increase loss of old permafrost C from tundra ecosystems, but the form and magnitude of C released to the atmosphere will be driven by changes in soil moisture.
Losses of C from decomposing permafrost may be offset by increased productivity of tundra plants, but nitrogen availability partially limits plant growth in tundra ecosystems. In this soil incubation experiment carbon (C) and nitrogen (N) cycling dynamics were examined from the soil surface down through upper permafrost. We found that losses of CO2 were negatively correlated to net N mineralization because C‐rich surface soils mineralized little N, while deep soils had low rates of C respiration but high rates of net N mineralization. Permafrost soils released a large flush of inorganic N when initially thawed. Depth‐specific rates of N mineralization from the incubation were combined with thaw depths and soil temperatures from a nearby manipulative warming experiment to simulate the potential magnitude, timing, and depth of inorganic N release during the process of permafrost thaw. Our calculations show that inorganic N released from newly thawed permafrost may be similar in magnitude to the increase in N mineralized by warmed soils in the middle of the profile. The total release of inorganic N from the soil profile during the simulated thaw process was twice the size of the observed increase in the foliar N pool observed at the manipulative experiment. Our findings suggest that increases in N availability are likely to outpace the N demand of tundra plants during the first 5 years of permafrost thaw and may increase C losses from surface soils as well as induce denitrification and leaching of N from these ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.