The paper studies the wetting of aluminum and glass surfaces with disordered roughness created by technologically simple methods: chemical deposition with simultaneous self-organization of nanoparticles on microprotrusions and valleys, as well as the application of thin coatings using polymer-dispersed systems with polymodal particle size distribution. Super-hydrophobic coatings with an edge wetting angle of 160–170° and a wetting hysteresis of no more than 10° on electrochemically nanostructured aluminum, processed by the dispersion with the polymodal distribution of aerosil microparticles, silicon oxide nanoparticles SiDB and carbon nanocomposite SHDB (Nanosintal, Belarus) in fluorinated varnish. The regularities of changes in the wetting angle of silicate glass with the coating of the same varnish with small additives were established, showing its significant growth with an increase in the content of aerosil microparticles and a decrease in the lacquer concentration. The increase in the content of SiDB and SHDB does not significantly affect the contact angle, but it significantly reduces the hysteresis of its wetting, which gives the glass the effect of “lotus”.
In this study, the stability of the aqueous dispersions of epoxy oligomers was investigated. The following epoxy oligomers with various numbers of epoxy groups were used for the characterization: NPEL 127, NPEL 128, NPEL 134, NPPN 631, EPOXY 520 and DEG-1. A non-ionic surfactant Emulsogen LCN-287 based on alkyl polyethylene glycol ether was used as an emulsifier. The dispersions of epoxy resins were fabricated by changing the content of a non-ionic surfactant (emulsifier) in a range from 2 to 6 wt.%. It was demonstrated that the stability of aqueous emulsions depends not only on the type of resin, but also on the content of the oil phase and the concentration of the emulsifier. The rheological properties of the aqueous dispersions of epoxy oligomers were investigated as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.