This paper deals with the initial-boundary value problem for the system of motion equations of an incompressible viscoelastic medium with Jeffreys constitutive law in an arbitrary domain of two-dimensional or three-dimensional space. The existence of weak solutions of this problem is obtained.
Sufficient conditions for existence of minimal uniform trajectory attractors and uniform global attractors of non-autonomous evolution equations in Banach spaces are obtained. It is not assumed that the symbol space of an equation is a compact metric space and that the family of trajectory spaces corresponding to this symbol space is translation-coordinated or closed in any sense. Using these results, existence of minimal uniform trajectory attractors and uniform global attractors for weak solutions of the boundary value problem for motion equations of an incompressible viscoelastic medium with the Jeffreys constitutive law is shown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.