Many of the vital actions of thrombin on platelets and other cells appear to be mediated by the recently cloned seven-transmembrane-domain thrombin receptor. Thrombin activates this receptor by a novel proteolytic mechanism. The amino-terminal exodomain of the receptor contains the sequence LDPRSFLLRNPNDKYEPF. Structure-activity studies with mutant receptors and receptor peptides suggest that this sequence binds to thrombin at two sites: LDPR with the active center of thrombin and KYEPF with the fibrinogen recognition exosite of thrombin. Thrombin then cleaves the Arg41-Ser42 bond to unmask a new amino terminus, which functions as a tethered peptide ligand binding to as yet undefined sites within the body of the receptor to effect receptor activation. We have determined eight crystal structures of thrombin complexed with receptor-based peptides. Each of the two components of the bidentate docking model was captured in individual cocrystals. In one crystal type, the LDPR sequence docked in the active center of thrombin in a manner analogous to d-PheProArg chloromethyl ketone. In other crystals, the KYEPF sequence bound in the fibrinogen anion binding exosite of thrombin in a manner analogous to the DFEEI sequence of the carboxylate-terminal peptide of hirudin. Strikingly, however, generation of a single crystal that includes both components of the anticipated bidentate binding mode was not achieved, apparently because the peptides have a dominant solution S-like conformation that does not bind in a productive way at the active center. This peptide structure apparently favored a novel alternative mode of receptor peptide-thrombin interaction in which the receptor peptides formed an intermolecular bridge between neighboring thrombin molecules, resulting in an infinite peptide thrombin chain in crystals. In this structure, the KYEPF sequence docked in the expected manner at the exosite of one thrombin molecule, but the LDPR sequence docked in an unusual nonproductive mode with the active center of a neighboring molecule. Mutations that removed important determinants of the S-like receptor peptide structure underlying the bridging mode in the receptor itself did not significantly alter thrombin signaling. Additionally, a comparison of receptor density to the responsiveness of a cell did not support a role for receptor oligomerization in signaling. The physiological role for this unexpected intermolecular binding mode, if any, remains to be identified.(ABSTRACT TRUNCATED AT 400 WORDS)
Thrombin, a trypsin-like serine protease present in blood, plays a central role in the regulation of thrombosis and hemostasis. A cyclic pentapeptide, cyclotheonamide A (CtA), isolated from sponges of the genus Theonella, inhibits thrombin, trypsin, and certain other serine proteases. Enzyme inhibition data for CtA indicate that it is a moderate inhibitor of alpha-thrombin (K(i) = 1.0 nM), but substantially more potent toward trypsin (K(i) = 0.2 nM). The comparative study of the crystal structures of the CtA complexes of alpha-thrombin and beta-trypsin reported here focuses on structure-function relationships in general and the enhanced specificity of trypsin, in particular. The crystal structures of the CtA complexes of thrombin and trypsin were solved and refined at 1.7 and 2.0 A resolution, respectively. The structures show that CtA occupies the active site with the Pro-Arg motif positioned in the S2 and S1 binding sites. The alpha-keto group of CtA is involved in a tetrahedral intermediate hemiketal structure with Ser 195 OG of the catalytic triad and is positioned within bonding distance from, and orthogonal to, the re-face of the carbonyl of the arginine of CtA. As in other productive binding modes of serine proteases, the Ser 214-Gly 216 segment runs in a twisted antiparallel beta-strand manner with respect to the diaminopropionic acid (Dpr)-Arg segment of CtA. The Tyr 60A-Thr 60I insertion loop of thrombin makes a weak aromatic stacking interaction with the v-Tyr of CtA through Trp 60D. The Glu 39 Tyr and Leu 41 Phe substitutions in trypsin produce an enhanced aromatic interaction with D-Phe of CtA, which also leads to different orientations of the side chains of D-Phe and the v-Tyr. The comparison of the CtA complexes of thrombin and trypsin shows that the gross structural features of both in the active site region are the same, whereas the differences observed are mainly due to minor insertions and substitutions. In trypsin, the substitution of Ile 174-Arg 175 by Gly 174-Gln 175 makes the S3 aryl site more polar because the Arg 175 side chain is directed away from thrombin and into the solvent, whereas Gln 175 is not. Because the site is occupied by the Dpr group of CtA, the occupancy of the S3 site is better in trypsin than in thrombin. In trypsin, the D-Phe side chain of CtA fits between Tyr 39 and Phe 41 in a favorable manner, whereas in thrombin, these residues are Glu 39 and Leu 41. The higher degree of specificity for trypsin is most likely the result of these substitutions and the absence of the fairly rigid Tyr 60A-Thr 60I insertion loop of thrombin, which narrows access to the active site and forces less favorable orientations for the D-Phe and v-Tyr residues.
<p>Reliability worth assessment is a primary concern in planning and designing of electrical distribution systems those operate in an economic manner with minimal interruption of electric supply to customer loads. Renewable energy sources (RES) based Distributed Generation (DG) units can be forecasted to penetrate in distribution networks due to advancement in their technology. The assessment of reliability worth of DG enhanced distribution networks is a relatively new research area. This paper proposes a methodology that can be used to analyze the reliability of active distribution systems (DG enhanced distribution system) and can be applied in preliminary planning studies to compute the reliability indices and statistics. The reliability assessment in this work is carried out with analytical approach applied on a test system and simulated results validate that installation of distributed generators can improve the distribution system reliability considerably.</p>
The title compound is formed by the rearrangement of 2,2'-dithiobis[4,5-dihydrothiazole] with the extrusion of one sulfur in dilute hydrobromic acid medium. 'HNMR, Mass spectral, X-PES studies and crystal structure determination have been carried out. While the Mass spectrum showed the presence of three sulfurs in the molecule, the presence of four triplets in the 'HNMR spectrum ruled out the symmetrical sulfide isomer. The unit cell is monoclinic, P2,/c, with a = 11.236(1), b=10.138(1), c=9.571(1)& /?=111.89"(1), V=1011.63A3, Dm=1.85Mg/m', D,= 1.86Mg/m3,at 2% K for four molecules per unit cell. From 1498 unique reflections for which I > 3a ( I ) , R = 0.051, with anisotropic thermal parameters for all non-hydrogen atoms. Both the five membered heterocyclic rings adopt the half chair conformation. Hydrogen bonding occurs involving the dihydrothiazolyl nitrogen, the proton attached to it and the bromide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.