We present tailoring of three dimensional light fields which act as light moulds for elaborate particle micro structures of variable shapes. Stereo microscopy is used for visualization of the 3D particle assemblies. The powerful method is demonstrated for the class of propagation invariant beams, where we introduce the use of Mathieu beams as light moulds with non-rotationally-symmetric structure. They offer multifarious field distributions and facilitate the creation of versatile particle structures. This general technique may find its application in micro fluidics, chemistry, biology , and medicine, to create highly efficient mixing tools, for hierarchical supramolecular organization or in 3D tissue engineering.
We observe the spinning and orbital motion of a microscopic particle trapped within a multiringed light beam that arises from the transfer of the spin and orbital components of the light's angular momentum. The two rotation rates are measured as a function of the distance between the particle and the axis of the trapping beam. The radial dependence of these observations is found to be in close agreement with the accepted theory.
In this paper we demonstrate the first use of enhanced optical forces and optically induced thermophoretic and convective forces produced by surface plasmon polariton excitation for large-scale ordering and trapping of colloidal aggregations. We identify regimes in which each of these forces dominate the colloidal dynamics and lead to different collective equilibrium states. These include accumulation and organization into hexagonal close-packed colloidal crystals, arrangement into linear colloidal particle chains, and the formation of colloids in a ring formation about the excited region.Peer ReviewedPostprint (published version
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.