Precipitates formed at an early stage (during the first 6 h) of the hydroxyapatite crystallization of a solution were studied. A nitrous synthesis was used (0.583M (NH(4))(2)HPO(4) and 0.35 M Ca(NO(3))(2).4H(2)O solutions at pH 11-12, 21 degrees C, fast mixing, lyophilization of aliquots). Although XRD patterns indicated an amorphous calcium phosphate (ACP), IR spectra revealed apatite nanocrystals in the precipitates. Some amount of free calcium was found in the mother solution by mass spectrometrical analysis of the aliquots. This amount considerably decreased as the synthesis proceeded, however, the decrease had a slight effect on the crystallinity of the precipitates. A new suggestion on the nature of delayed crystallization (under conditions as those in the present study) was proposed. The free calcium adsorbed by the nanoparticles from the solution formed a shell around a particle because the calcium diffusion into the bulk was poor at the low synthesis temperature. As such, the encapsulation delayed the crystallization of the nanoparticles. Evidence for this suggestion was given. New possibilities were proposed for preparation of bioactive materials of desired composition based on the structural and compositional peculiarities of the X-ray diffraction-amorphous calcium phosphates.
Lattice and surface impurity reactions and structural changes induced by them in slightly carbonated hydroxyapatite (SCHA) treated at 25-1100 degrees C were comprehensively studied. The SCHA was processed by a conventional wet synthesis at a high possible temperature(96 degrees C) using ammonium containing parent reagents. IR-spectroscopy, XRD, TG-DTA technique and mass spectrometric thermal analysis (MSTA) were employed for characterization of the samples. NH4+ with H3O+ in cationic-and CO3(2-) (A- and B-positions) with HPO4(2-) in anionic sites, and H2O, CO3(2-)(HCO3(-)) NO3(-), NxHy on the surface of particles were found and considered as impurity groups. Complicated changes in lattice constants of theSCHA stepwise annealed in air (for 2 h) were revealed; the changes were associated with reactions of the impurity groups. Filling the hexed sites with hydroxyl ions above 500 degrees C was shown to happen partly due to lattice reactions but was mainly owing to hydrolysis of the SCHA by water molecules in air. Decomposition of CO3(2-) groups proceeded through both thermal destruction and reactions with some of the impurity ions. The decarbonation in A-sites occurred at much lower temperatures (450-600 degrees C) than in B-sites (700-950 degrees C) and was first revealed to happen in two stages: due to an impurity reaction around 500 degrees C, and then through thermal destruction at 570 degrees C. A redistribution of CO3(2-) ions, decreasing in amount on the whole, was observed upon annealing above 500 degrees C. To avoid possible erroneous conclusions from TG-data, a sensitive method was shown to be required for monitoring gaseous decomposition products (such as the MSTA in this study), in case several impurity groups were present in a SCHA.
Two kinds of calcium phosphate ceramic (CPC) granules of high porosity (50 +/- 5%) and improved (for such materials) compressive strength (10-25 MPa) consisted of hydroxyapatite (PHA) and a mixture of hydroxyapatite (HA) and beta-tricalcium phosphate (beta-TCP) in 60 HA/40 beta-TCP composition (PCPC) were developed. A comparative study of in vivo behavior of the materials implanted into an almost unloaded (greater trochanter of femur) and loaded (distal methaphysis of femur) zones in the skeleton of rabbits was performed. Significant activating influence of loading on the processes of new bone formation and reconstruction in macropores of both materials during all periods of implantation (up to 6 months) was observed. The role of relevant cells in the processes in the unsoluble PHA and the degradable PCPC (in which the processes was observed to intensify due to dissolution of the material) was studied and is discussed. Great disturbance in pore structure of the BCPC was revealed in more late periods of implantation. After 6 months, presence of large composite fragments located in intertrabecula spaces of greater trochanter was a characteristic feature of the PCPC crushing. The developed CPC materials seems to have good perspective for using in bone defect plasty in some loaded areas of the skeleton.
Nanocrystalline calcium phosphate was precipitated at 20 C from calcium nitrate and ammonium phosphate solutions at a pH of 9 -11. The nature of the mass loss steps in thermogravimetry of the product was revealed by in-situ mass spectrometry of released gases upon heating. Major amounts of nitrate-containing impurities like NH 4 NO 3 and Ca(NO 3 ) 2 were present which could only be removed by multiple washing with water. These impurities were not crystalline, but they were clearly detectable in the infrared spectrum. In conclusion, the high specific surface area of freshly precipitated calcium phosphate may cause the adsorption of considerable amounts of foreign compounds (molecules and ions) in the percent mass range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.