In this work, we present an atomistic model to simulate the structural and some thermodynamic properties of biomaterials as a test case of grossular glass-ceramics. The potential model used in our simulations included short range Born-Mayer type forces and long-range Coulomb interactions. We modelled the atomistic structure of grossular using the different structural optimization methods in conjunction with molecular dynamics simulations.The calculated values of the lattice constant, bulk modulus, elastic constants and cohesive energy are in reasonable agreement with experimental measurements and previous data. The melting point of grossular produced from a volume of the heating process is in a good agreement with literature. Comparison of the predictions of partial pair distribution functions and available experimental data shows that this model has simulated the liquid structure of grossular reasonably well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.