We have experimentally studied the effect of microjets on the flow field of a Mach 0.9 round jet. Planar and three-dimensional velocity field measurements using particle image velocimetry show a significant reduction in the near-field turbulent intensities with the activation of microjets. The axial and normal turbulence intensities are reduced by about 15% and 20%, respectively, and an even larger effect is found on the peak values of the turbulent shear stress with a reduction of up to 40%. The required mass flow rate of the microjets was about 1% of the primary jet mass flux. It appears that the microjets influence the mean velocity profiles such that the peak normalized vorticity in the shear layer is significantly reduced, thus inducing an overall stabilizing effect. Therefore, we seem to have exploited the fact that an alteration in the instability characteristics of the initial shear-layer can influence the whole jet exhaust including its noise field. We have found a reduction of about 2 dB in the near-field overall sound pressure level in the lateral direction with the use of microjets. This observation is qualitatively consistent with the measured reduced turbulence intensities.
Cavitation has been observed in the trailing vortex system of an elliptic planform hydrofoil. A complex dependence on Reynolds number and gas content is noted at inception. Some of the observations can be related to tension effects associated with the lack of sufficiently large-sized nuclei. Inception measurements are compared with estimates of pressure in the vortex obtained from LDV measurements of velocity within the vortex. It is concluded that a complete correlation is not possible without knowledge of the fluctuating levels of pressure in tip-vortex flows. When cavitation is fully developed, the observed tip-vortex trajectory shows a surprising lack of dependence on any of the physical parameters varied, such as angle of attack, Reynolds number, cavitation number, and dissolved gas content.
Cavitation inception and development on two axisymmetric bodies was studied with the aid of a Schlieren flow visualization method developed for that purpose. Both bodies were found to exhibit a laminar boundary layer separation; cavitation inception was observed to occur within this region of separated flow. The incipient cavitation index was found to be closely correlated with the magnitude of the pressure coefficient at the location of flow separation on one of the bodies. There is also experimental evidence that events at the site of turbulent reattachment of the separated flow may also greatly influence cavitation inception.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.