The packing of a genome in virions is a topic of intense current interest in biology and biological physics. The area is dominated by allometric scaling relations that connect, e.g., the length of the encapsulated genome and the size of the corresponding virion capsid. Here we report scaling laws obtained from extensive experiments of packing of a macroscopic wire within rigid three-dimensional spherical and nonspherical cavities that can shed light on the details of the genome packing in virions. We show that these results obtained with crumpled wires are comparable to those from a large compilation of biological data from several classes of virions.
The injection of a long flexible rod into a two-dimensional domain yields a complex pattern commonly studied through the elasticity theory, packing analysis, and fractal geometries. ‘Loop’ is a one-vertex entity that naturally formed in this system. The role of the elastic features of each loop in 2D packing has not yet been discussed. In this work, we point out how the shape of a given loop in the complex structure allows estimating local deformations and forces. First, we build sets of symmetric free loops and perform compression experiments. Then, tight packing configurations are analyzed using image processing. We find that the dimensions of the loops, confined or not, obey the same dependence on the deformation. The results are consistent with a simple model based on 2D elastic theory for filaments, where the rod adopts the shape of Euler’s elasticas between its contact points. The force and the stored energy are obtained from numerical integration of the analytic expressions. In an additional experiment, we obtain that the compression force for deformed loops corroborates the theoretical findings. The importance of the shape of the loop is discussed and we hope that the theoretical curves may allow statistical considerations in future investigations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.